
Two Remarks on Public Key Cryptology

Ross Anderson

University of Cambridge Computer Laboratory,
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

Ross.Anderson@cl.cam.ac.uk

In some talks I gave in 1997-98, I put forward two observations on public-key
cryptology, concerning forward-secure signatures and compatible weak keys. I
did not publish a paper on either of them as they appeared to be rather minor
footnotes to public key cryptology. But the work has occasionally been cited
(e.g., [5]) and I’ve been asked to write a permanent record.

1 On the Forward Security of Digital Signatures

At the rump session of Eurocrypt 97, I introduced the idea of a forward secure
digital signature, on which I elaborated in passing during an invited talk given at
the ACMCCS conference later that year. The concept has since been developed
further by other researchers [3, 5].

1.1 The basic idea

In 1996, Adam Back floated the idea of a public key cryptosystem with a series
of public keys pi and secret keys si that stand in the usual relationship with each
other but for which there are updating functions fi and gi such that pi+1 = fi(pi)
and si+1 = gi(si) [2]. In this way a single root public key p0 could be certified,
and thereafter the key owner could regularly calculate si+1 and destroy si. In
this way, the compromise of a private key would not expose traffic encrypted
to the key in previous epochs. In 1997 I proposed the obvious extension to
digital signatures, in order to prevent the retrospective forgery of messages signed
using keys belonging to earlier epochs but without requiring that the public key
infrastructure accommodate large numbers of time-limited public keys.

As motivation, note that while Diffie-Hellman key exchange [6] can provide
forward security easily in interactive communication, the US Defense Messaging
System (DMS) apparently uses transient public keys to provide forward security
in offline messaging: when Alice wishes to communicate with Bob, she fetches
from a directory server a public key signed with his long-term private key. (DMS
is described in [8], and the KEA key agreement algorithm which it uses in [10].) Is
it possible to provide such functionality without having to commit to a particular
directory access infrastructure?

1.2 Forward secure signature

The forward secure signature method I suggested at Eurocrypt and ACM starts
off with the Fiat-Shamir scheme [7]. The basic idea behind this is that a signature



Sig is produced as a combinatorial product of a number of secrets σi, which
are the roots of public verification values vi. In its simplest form, one simply
multiplies together the secrets σi for those values of i for which the i-th bit in
the hash of the message to be signed is 1.

Sig =
∏

hi(M)=1

σi

The secret values might, for example, be the key owner’s name, hashed with
the integers i, in order to provide a signature scheme that is identity-based (that
is, the public key is the user’s name). In the Fiat-Shamir variant, the trapdoor
one-way function which maps σi to vi is squaring modulo a product of two
large random primes (to provide provable security) and there is also a random
multiplier (so that the secret values σi can be resued indefinitely.) This makes
the signature Sig = (r2, s) where

s = r
∏

hi(M)=1

σi (mod n)

My proposal was to have two different features:

– after working out a large enough secret vector σi from the public vector vi,
destroy the factors of the modulus

– erase one or more of the σi after each signature

Some care is needed in the detailed implementation, such as to prevent any
σi being reconstructed from signatures using Gaussian elimination; but this is
well within the scope of someone skilled in the art.

1.3 Forward secure encryption

The general observation that followed is that any identity based public key cryp-
tosystem or digital signature scheme can be adapted to provide a forward secure
system. The trick is that the key owner plays the role of the CA in the identity-
based scheme and generates private keys corresponding to the ‘identities’ of 1,
2, 3, ... or the dates, or whatever else is required.

Thus, for example, we can get forward secure encryption by the obvious adap-
tation of the Maurer-Yacobi scheme, which employs Diffie-Hellman key exchange
with a composite modulus whose factors are known to the CA and with respect
to which she can compute discrete logs to obtain the private keys corresponding
to given public keys [9].

I also pointed out that ‘ID-based’ signature schemes are not signature schemes
in terms of the usual legal definition of an electronic signature, which imposes
a requirement that the signer maintain the means of signature creation under
her sole control. Thus perhaps forward security is the real application of this
technology.

2



1.4 Forward versus backward security

There has been some comment recently about whether the protection provided
by the above schemes is forward security or backward security. The terms are
now controversial (see, e.g., RFC 2828 [12]). Until recently, people used the term
‘forward security’ loosely to mean a design with the property that the compro-
mise of a current key would have only limited effect, as with Diffie Hellman.
How, however, the following distinction is being drawn between backward and
forward security.

Backward security may be taken to mean that a compromise of a key now
does not necessarily expose old traffic. In traditional systems, it is provided by
key updating: two or more principals who share a key pass it through a one-way
hash function at agreed times: Ki = h(Ki−1).

Forward security may be taken to mean that a compromise of a key now does
not necessarily expose future traffic. Before the advent of public key cryptogra-
phy, it was achieved by regular rekeying, or in some cases by autokeying, in which
two or more principals who share a key hash it at agreed times with the messages
they have exchanged since the last key change: K+1i = h(Ki, Mi1, Mi2, . . .). The
point is that if an attacker compromises one of their systems and steals the key,
then as soon as they exchange a message which he doesn’t observe or guess,
security will be recovered. This is fragile in general, as it is easy to lose synchro-
nization: but a variant on the theme is used if EFTPOS terminals in Australia [4].
Diffie-Hellman allows a stronger form of forward security, namely that as soon as
a compromised terminal exchanges a message with an uncompromised one, then
security can be recovered even if all the traffic is monitored by the opponent.

I believe that this distinction is sensible, and when we use these definitions,
the mechanisms described above mainly provide backward security. In some cir-
cumstances, they can also provide forward security given suitable surrounding
protocols. The simplest way to do this in the case of encryption is to keep all
the key material for future use in offline storage. It is also possible to store the
private keys (si in the terminology of [9]) under keys formed from hash chains
running in the appropriate direction. Thus, for example, the keys si can be stored
encrypted under the keys ki where kj = h(kj−1), and where each kj is discarded
after use. (This does not stop a compromise of ki exposing all future keys, so is
not forward security.)

In 1997–98 key escrow was a bigger issue than it is now. I remarked that
private keys could be stored by the escrow agent too but under the keys ej

where ej = h(ej+1). That way the escrow agent can give the law enforcement
agency keys for the back traffic without compromising future keys. This provides
forward security of a sort. But in the UK, this question is now moot as recent
crypto legislation allows users to revoke public keys at once if the corresponding
private keys are confiscated by law enforcement agencies.

3



2 Compatible Weak Keys

Some programs, such as the support for Microsoft’s Crypto API (CAPI) em-
bedded in Windows, verify other programs using embedded public signature
verification keys. Sometimes there is a requirement to defeat these mechanisms,
such as to circumvent export control or accessory control functions. A naive ap-
proach is to find the public key and replace it with another one. The problem
here though is that, although all existing modules can be re-signed with the
new key, the system may balk at accepting genuine software downloaded later,
which could make software upgrades problematic for companies that bought a
product which substituted the embedded key. This problem arose in the context
of a Cambridge company, nCipher, that needed to defeat CAPI in order to make
their products work with Microsoft operating systems.

Another problem is that many people leave uncertified keys in places that
are not adequately protected. For example, people leave their PGP keys on their
web pages. There appears to be an implicit assumption that if the key is replaced
by an attacker, it will be detected quickly as ciphertexts will be received that
cannot be decrypted. These observations inspired the following.

Given a public key K and the corresponding private key K−1, a compatible
public key k is one which will encipher messages so that K−1 can decipher them,
or verify signatures made by K−1, or both. A compatible weak key also has a
further private key k−1 which will decipher messages enciphered using k, or
create signatures that k will verify, or both.

It is easy to create a compatible weak key for RSA encryption. Let the
genuine public key be (e, n); if this is replaced (for example, on a public keyring)
by (e, nn′) where the attacker knows the factors of n′, This provides a compatible
weak key for some RSA encryption systems. For example, it provides an exploit
against the large prime variant of RSA, where the session key must be padded
with zeros in its most significant bits, and (I am told) for at least one proprietary
system. It does not, as it happens, provide an exploit against PGP version 2
because the software truncates the received key packet to the number of bits
declared in the user’s private key.

Similarly, there is a possible attack against ElGamal encryption, the basic
idea of which is to force the operation into a smooth subgroup [1]. If the en-
cryption key is p, g, y (= gx mod p), then it can be replaced with p, gq, yq where
p−1 = qr and r is smooth. This does not work against PGP v 5 because of ran-
dom padding of the key packet’s plaintext, which I understand was introduced
to stop low-exponent attacks on RSA but kept in PGP version 5 as legacy code.

So here is a new attack on public key cryptosystems. It fails to provide
exploits against the most widely fielded applications, but this is a matter of
chance rather than of design.

I’m aware of no compatible weak key attacks on signature schemes that work
in the general case. As for CAPI, the attack found by nCipher is completely
different: it is documented in [11]. I understand from them that in the end it
was never necessary to exploit it.

4



Historical note: I first talked about forward secure signatures sometime in
early 1997 at the regular security group meeting at Cambridge University. As
far as I can reconstruct from the slides, sections 1.1 and 1.2 were presented at
Eurocrypt 97 and section 1.3 was added at ACMCCS. Section 3 was presented
at the rump session of Crypto 98, although its first mention in public was at a
Cambridge security group meeting in January 1998. Anyone from the audience
at any of these events who has more detailed notes is welcome to contact me.

References

1. RJ Anderson, S Vaudenay, “Minding your p’s and q’s” in Advances in Cryptology
– Asiacrypt 96, Springer LNCS vol 1163 pp 26–35

2. A Back, “non-interactive forward secrecy”, posting to cypherpunks mailing
list (6/9/1996), archived at http://cypherpunks.venona.com/date/1996/09/

msg00561.html

3. A Back, “Non-interactive forward secrecy / identity based crypto ”, posting to
cypherpunks mailing list (31/5/1998), archived at http://www.inet-one.com/

cypherpunks/dir.1998.05.25-1998.05.31/msg00171.html

4. HJ Beker, JMK Friend, PW Halliden, ‘’Simplifying key management in elec-
tronic fund transfer point of sale systems”, in Electronics Letters v 19 (1983) pp
442–443

5. M Bellare, SK Miner, “A Forward-Secure Digital Signature Scheme”, in Ad-
vances in Cryptology – Crypto 99 Springer LNCS v 1666 pp 431–448

6. W Diffie, ME Hellman, “New Directions in Cryptography”, in IEEE Transac-
tions on information theory v 22 no 6 (Nov 76) pp 644–654

7. A Fiat, A Shamir, “How to prove yourself: practical solutions to identification
and signature problems”, in Advances in Cryptology — CRYPTO 86, Springer
LNCS v 263 pp 186–194

8. A Kondi, R Davis, “Software Encryption in the DoD”, at NISSC 97 pp 543–554
9. UM Maurer, Y Yacobi, “A Non-interactive Public-Key Distribution System”,

in Designs, Codes and Cryptography v 9 no 3 (Nov 96) pp 305–316
10. National Institute of Standards and Technology, ‘SKIPJACK and KEA Algo-

rithms’, 23/6/98, http://csrc.nist.gov/encryption/skipjack-kea.htm
11. A Shamir, N van Someren, “Playing ‘Hide and Seek’ with Stored Keys”, in

Financial Cryptography 1999 pp 118–124
12. R Shirey, ‘Internet Security Glossary’, RFC 2828 (May 2000), at http://www.

es.net/pub/rfcs/rfc2828.txt

5


