Increasing Anonymity in Bitcoin

1KGmoGJZ{GXFZHU9IbKjQmaphY Jy8wVVEeh*

Abstract. Bitcoin is a peer-to-peer cryptocurrency that prevents double spending using a distributed
public ledger (known as the blockchain). Due to this, true anonymity is not present in Bitcoin because
funds can be traced as they pass via different addresses. It is sometimes possible to link various addresses
and obtain information not apparent in the beginning (such as loops). We present a method to enhance
the anonymity of Bitcoin-type cryptocurrencies. Our method uses a new primitive known as one-way
aggregate signature (OWAS). The anonymity in our scheme is based on the hardness of the computation
Diffie-Hellman assumption in bilinear maps and the knapsack problem. At a high level, the idea is based
on ‘mixing’ funds and can be summarized as follows. In the blockchain, each individual block holds
a list of transactions that cryptographically link the sending and receiving addresses. We modify the
protocol so that transactions (and blocks) do not contain any links between sending and receiving
address. Using this, we obtain a far higher degree of anonymity than what is currently offered. We use
two techniques to unlink the input and output addresses of a transaction - using OWAS and applying
the knapsack problem to further obfuscate the funds going in and out.

Keywords: Bitcoin, cryptocurrency, aggregate signatures, knapsack, anonymity

1 Introduction

Bitcoin (symbol B) is a cryptocurrency based on peer-to-peer technology. It uses no central authority and
allows instant fund transfers across the globe without needing any intermediary [1, 2]. Bitcoin enables trans-
action confirmation (to prevent double spending) using a reward system. The first transaction of every block
is a reward (currently B25) to whoever first provides a solution to hard puzzle as a “proof-of-work”. The
puzzle is constructed from unconfirmed transactions and the proof-of-work serves as a distributed, tamper
proof ledger.

In Bitcoin, funds are exchanged between addresses which are hashes of public keys! The addresses serve
as pseudonyms and provide some anonymity. However, Bitcoin raises serious privacy concerns because all the
information is public and permanently stored. Furthermore, digital signatures used in transactions provide
cryptographic proofs of funds transfer.

Our contribution: We propose a method to enhance the anonymity of Bitcoin using a new primitive known
as one-way aggregate signature (OWAS). Our method removes any cryptographic proofs of funds transfer.
The links between inputs and outputs are obfuscated because using OWAS, multiple transactions can be
grouped together into a larger transaction such that no links between the inputs and outputs of the original
transactions remain. The knapsack problem [3] is used for additional anonymity. Our anonymity comes in
the form of plausible deniability [4] (“you may have done it but we cannot be sure”).

Overview of one-way aggregate signatures: In aggregate signatures [5] many individual signatures can be
combined into and replaced with one short object - the aggregate signature. They were proposed to increase
efficiency in verifying multiple signatures in applications such as routing protocols. However, the aggregate
signatures of [5] have another useful property that is not captured (and not needed) in standard definitions
such as in [5]. The property is that the aggregation process is one-way - given just the aggregate signature, it is
very hard to compute the individual signatures. This was used to construct verifiably encrypted signatures [5].
OWAS define this one-way property in a more general sense.

* Bitcoin address for authenticating authors
1 We use the terms ‘address’ and ‘public key’ interchangeably. The meaning will be clear from the context.

The rest of the paper is organized as follows. we review related works in Section 2. We give an overview
of Bitcoin in Section 3. We describe our method to enhance anonymity using OWAS in Section 4. We give
the definition and construction of an OWAS scheme in Section 5. A summary of our method is given in
Section 6. Finally, we describe how to integrate our protocol with existing Bitcoin protocol in Section 7.

2 Related Work

Aggregate signatures: Aggregate signature were proposed by Boneh et al. in [5] based on the hardness of
the Computational Diffie-Hellman (CDH) problem in bilinear maps. Their purpose was to combine many
signatures into one short aggregate signature to improve efficiency. Their aggregate signatures, however,
have the additional property that once aggregated, the individual signatures cannot be extracted from the
aggregate signatures. This property was used in Verifiably Encrypted Signatures [5]. Coron and Naccache
proved in [6] that extracting any sub-aggregate signature in a non-adaptive attack (where the adversary
makes only one sign query) is as hard as solving the CDH problem. OWAS define the one-way property
under the stronger adaptive chosen key and message attack, where the adversary is allowed to make several
sign queries on messages of his choice before outputting a forgery.

There have been several extensions of aggregate signatures such as sequential aggregate signatures [7-9],
ordered multi-signatures [10, 11], history-free sequential aggregate signatures [12] and sequential aggregate
signatures with lazy verification [13]. However, they do not depend on this ‘one-way’ property of aggregate
signatures. One-way chain-signatures [14] use this property but the signatures are ordered (sequential) and
the security is proved in a weaker security model (the semi-adaptive known key model) where the adversary
does not include other public keys and makes all private-key extract queries before other queries. The ordering
in all the above schemes precludes them from being used to increase anonymity in cryptocurrencies.

Anonymity in Bitcoin: Elli Androulaki et.al [15] discuss privacy issues associated with the bitcoin protocol
such as if an adversary can link more than one public addresses and concludes that they belongs to same
user. They classify the problem into Activity Unlinkability or Address Unlinkability and User Profile Indis-
tinguishability and propose several heuristic techniques to reveal user privacy in multi-input transactions.
Furthermore, they perform behavioral analysis to link multiple public addresses to same user. Fergal Reid
and Martin Harrigan [16] on the other hand considered the topological structure of two networks derived from
Bitcoin’s public transaction history and analyze implications for the anonymity and currency theft. In [17],
Dorit Ron and Adi Shamir used the transaction graph of [16] and perform several interesting analyses in-
cluding one on relatively large bitcoin transactions and conclude that almost all largest transactions were
linked to a single large transaction which the user in question might be attempting to hide. Finally, Nicolas
Christin [18] has performed a detailed analysis of an anonymous online marketplace which uses Bitcoin.
Current and proposed approaches for increasing anonymity rely on “mixers” that mix bitcoins from
various different sources before sending to destinations. Zerocoin [19] is a technique that uses zero-knowledge
proofs and commitment schemes to unlink sending and receiving addresses and uses an alternate currency
as an intermediate exchange medium. Our technique does not rely on alternate currencies or zero-knowledge
proofs. Note that although our method also does not provide true anonymity, the anonymity offered is far
higher than what is currently offered in Bitcoin. Our method can be used in conjunction with other proposed
approaches (such as zerocoin). Compared to zerocoin, it is easier to integrate our method with Bitcoin.

3 Overview of Bitcoin

Some basic concepts about the Bitcoin protocol are necessary to understand our idea. These are: transaction,
input, output, reference, block and confirmation. We describe them below.

Transaction: Roughly speaking, a transaction consists of a set of inputs (source of funds) and outputs
(destination of funds).

Example: Suppose Alice is the owner of address A which received x bitcoins in a previous transaction. She
wants to send y < x bitcoins to Bob’s address B. Alice constructs a transaction with A as the input and
B as one of the outputs. She also inserts ref, the reference to the previous transaction’s output where A
received those x bitcoins. The entire amount x must be transferred from A. Alice sends y bitcoins to B, sets
a transaction fee ¢ and sends the remaining amount z = = —y —t to her change address C, which is the other
output. The change address is simply any address owned by Alice (possibly A). The message

“(ref: remove Bz from A), (put By in B), (put Bz in C)”

is signed under A.

Notation: We will use the following notation:

— X" 1 is the message “(ref: remove Bx from X)”. This is an input.
— X + z is the message “put Bz in X”. This is an output.
— ox(m) is signature on message m under public key X.

Alice’s transaction is then (m,o4(m)), where m = (A o z, By, C < 2).

Transactions: The above scenario had a single input. In reality, a bitcoin transaction can have multiple
inputs with no particular link between any source-destination pair. The entire transaction is signed under
every input public key. The only requirement is that the sum of the funds at the inputs is greater than or
equal to the sum of funds at the outputs. Any difference is considered a transaction fee. More formally, define
m to be the message

M dZEf (A1 Tgl $17A2 Tiz o, ... 7An TE;" Jjn,Bl — yl,Bg — Ya2,.. .,Bl — yl),

where: (A1, x1,ref1), (As, xa,mefs), ..., (An, Tn,ref,) are n tuples each consisting of an address A;, amount
of funds x; and a reference to a previous transaction where A; received z; bitcoins, and (B1,y1), (Be,y2), - - ., (B, y1)
are [pairs of addresses and amount of funds. A valid transaction tx is a tuple:

te = (M, 04, (M), 04,(M),...,04,(M)) (1)
such that each signature o4, (M) verifies correctly and the following holds:

l
1. Zi=1 Y < Z?:l Zg
2. Each ref; for 1 <1i < n was never used in any prior transaction.

The ordering of the signatures in tx is determined from the ordering of messages inside M (which is fixed
due to the signatures).

Referencing outputs: In future, when spending the funds from any of the outputs (say B; < y;) of the above
transaction, a reference refp,,, to that output needs to be provided. Let tz be the string of Eqn. 1. Then

refp ey, = (Hash(tx),i)

Because ref is constructed from the hash of a previous transaction, it is guaranteed that two different
transactions are distinct unless the outputs, input and ref are identical (a forbidden scenario). Due to
this, it is also guaranteed (with high probability) that the refs generated by using hashes of two different
transactions are also different. In fact, this is how Bitcoin prevents double spending (see below). A ref can
be used in a transaction at most once. Bitcoin clients maintain a list of unused refs to do this check.

Unspent outputs (and double-spends): An unspent output is essentially an unused reference, one that has
never been used in any transaction. The protocol design guarantees that references to two different outputs
will be distinct (see above). Each client maintains a set called ‘unspent outputs’. Each output of every
transaction is added to this set, and removed when is it used as a reference in another transaction. A
transaction with a reference not in this list is considered a double spend and is not processed.

Validating Transactions: A new transaction is valid if all the references are unused. If so, the transaction is
accepted as wvalid but unconfirmed, and is relayed on the network. The clients add each such transaction to
a pool of unconfirmed transactions. Unconfirmed transactions can be double-spent.

Confirming Transactions: A miner is a client who confirms new transactions by solving a hard puzzle
and providing the solution as a ‘proof-of-work’ as follows:

1. A bunch of unconfirmed transactions along with one reward transaction (known as the coinbase trans-
action) are combined into a ‘block’.

2. Hash of the previous block h,, is added to the block.

3. A nonce is added to the block.

4. Hash(b) of the final block b is computed.

If the output of the hash contains (at least) a specified number of leading zeros, the puzzle is solved,
otherwise the miner tries with different nonces until the puzzle is solved or some other miner broadcasts the
solution of a puzzle for a block referencing h,,. A correct solution implies that the corresponding block is
‘mined’ and all transactions contained in it are confirmed.

Confirmations: The number of confirmations of a transaction are the number of blocks in the blockchain
that have been accepted by the network since the block that includes the transaction. The possibility of
double-spending a transaction decreases exponentially with the number of confirmations.

Transaction pool management: Each client maintains a pool of unverified (but valid) transactions. An element
is removed from this pool when that transaction gets included in a mined block. This ensures that even if a
transaction is not included in an immediate block, it is kept in the pool until it gets mined. This guarantees
that once a transaction has been included in the pool of at least one miner, it will eventually be verified.?

Anonymity: Transactions are not anonymous; since each input public-key signs the entire transaction,
some information is inherently leaked:

1. Each output is linked to the inputs via the signatures.
2. Each input is also linked to the previous output via the ref.
3. The inputs themselves are linked together (they belong to the same wallet).

4 Increasing Anonymity

It is possible to link outputs to inputs, which causes loss of anonymity. We describe here a modified protocol
that removes these links. Our protocol uses two primitives: (1) One-Way Aggregate Signatures, and (2) The
knapsack problem [20].

The intuition for anonymity is that because inputs and outputs in a transaction are cryptographically
unlinked, a miner and other intermediaries can ‘dilute’ the information contained in a transaction by inserting
more information before processing it further. The final mined block will have the input-output links in each
individual transaction highly obfuscated. The only information will be the set of inputs and outputs of an
entire block without any particular linkages within them.

2 The word ‘pool’ as used here should not be confused with ‘mining pool’. They are unrelated terms.

One-way Aggregate Signatures (OWAS). The symbol ox(m) denotes a signature on message m under
public key X. Define OWAS roughly as follows:

1. Aggregation: A number of individual signatures ox, (m1), ox,(ms),...,o0x, (my) can be combined into
a ‘compact’ aggregate signature o((x, x,....x,1)({m1,m2,...,my}), using which we can be convinced
that each m; was signed under public key X;.

The aggregate signature is said to be on the set {(m1, X1), (ma, X2),...(mn, Xn)}.

Incremental aggregation: More signatures can be added to the aggregate signature at any time.

3. One-way: It is computationally hard to obtain any sub-aggregate signature given just the aggregate
signature. Informally, given the aggregate signature on a set S = {(m1, X1), (ma, X2), ... (mn, X))} of
(message, public-key) pairs, it is hard to compute the aggregate signature on any subset S’ C S.

4. No ordering: The aggregate signature does not maintain order - given an aggregate signature, it is
impossible to decide if it was computed ‘all at once’ or incrementally.

N

OWAS are formally defined in Section 5.

A modified protocol Consider the message from the original protocol:

M (A Ay A 2 By g By s B),

M is a combination of messages mi,ms, ..., My, M1, Ma, ..., My, where:
def Teli .
m; = (4; “ zi) (1<i<n) [Inputs]
i = (B «y;) (1<i<) [Outputs]

Transactions: Instead of defining a transaction as in Eqn. 1 (repeated below):

def

te = (M,04,(M),04,(M),...,04,(M)),

we define it using OWAS as follows::

tr = (]\47 U({Al$A2$H.7Amzl,22’”.’21})({ml,mg, e, My, M1, Mo, ... ,ml})), (2)

such that each A; is a randomly generated public key, called a masking key, and the pairs (A;, ;) are
unique. Define 4 & {A1,As,... Ay, A Ag, . Ay} and 1T = {my,ma,...my,, M1, Ma,...mM;}. Equivalently,

def
tr = (H, O'(A)(H))

Observe that in the above transaction, unlike the original Bitcoin protocol, each ‘regular’ public key signs
a message containing exactly one input. It is never used for sign messages containing any output or other
inputs. Consequently, the signatures do not undeniably link the sending addresses to the receiving addresses
or other sending addresses. The one-way property of OWAS preserves the security of the original protocol; it
is infeasible to isolate any signatures spending funds from the inputs. Later on, we describe techniques that
exploit these facts to enhance anonymity of transactions.

Confirming a transaction: A transaction tx is valid if each of the inputs has an unused reference to a
previous output. Confirmation of tx requires a miner to solve a puzzle for a block containing that transaction,
constructed as follows:

1. A number of unconfirmed transactions tx1, txo, . .. tx, are collected for inclusion in the block, where each
tx; is defined as :
def .
tr; = (HZ', U(Ai)(Hi)) (1 <i<a)

Additionally, a coinbase (reward) transaction tx. with no inputs is created:

def

tre = (HC’U(Ac) (HC))’

2. Tt is verified that each (masking-key, output) pair from all the transactions combined together is unique.
Not only do we require that the pairs are unique in each transaction but also in all the transactions
combined together.

3. A final block b is computed as follows:

(a) Hash of the previous block h,, is computed.
(b) A combined aggregate signature o}, is computed. That is,

op = T(A,UAUAU. A [T UTTL UTT U .. T1,,)

(c) Assume some canonical ordering of all inputs and outputs. Define

L, n.ull,ull,U...I,,
where the elements of I, are arranged in the canonical order.
(d) The final mined block b is computed as:

b dZEf (hprv Hb7 Op, gb)v
where 6y, is a nonce s.t. Hash(b) has a certain number of leading zeros.

Referencing the outputs: In this modified protocol, we don’t reference simply the outputs, but rather the
(masking-key, output) pairs. Let (4;,7;) be some (masking-key, output) pair in one of transactions included
in the above block. Recall that such a pair is unique in a block (even if the output may be repeated). We
compute a reference to the above pair as:

ref; my) = (Hash(b), Hash(A;,m;))

Since the reference contains the hash of the block, an output can only be spent if its transaction has been
included in a mined block. This makes the new transaction incompatible with services that allow spending
from unconfirmed transactions (such as satoshidice.com). However, this also makes the protocol more robust
to DoS attacks. To summarize, in the modified protocol, it is not possible to spend from unconfirmed
transactions.

Security: OWAS provide security against two distinct types of forgery. The first type, called ordinary forgery
is the one that all conventional signature schemes are expected to satisfy. This involves forging a signature
under an input public-key to steal funds. The second one, called eztraction forgery occurs when two signatures
can be ‘separated’ given the aggregation. This will also allow an attacker to steal funds.® Since OWAS do
not allow extraction of any sub-aggregate signatures, peers can only add further signatures to a transaction.
Double spending and replay attacks are prevented in a manner similar to the original protocol. We maintain
a list of unused refs, and reject the transaction that contains a ref that has been used. We justify that the
references are unique as follows:

1. The reference is a hash of the block and the (masking-key, output) pair.
2. Each block is unique because it contains a hash of the previous block.
3. The (masking-key, output) pairs in a block are unique.

We additionally consider the case where the sender uses a weak or compromised masking key. This is
similar to a double spending attack. The receiver should not trust the transaction until it is confirmed.

Anonymity: First observe that each input and output is cryptographically linked to only one public key (the
regular key or a masking key). Therefore given a transaction as in Eqn 2, it is impossible to prove that the
signer knew any outputs. Furthermore, signatures from many transactions can be aggregated to obfuscate
the input-output relationships (we discuss this below). Additionally, once a transaction is confirmed in a
block, it is removed from memory and only the confirmed block is stored. The block alone does not leak any
information about the input-output links. Consequently, if the individual transactions are not saved, this
information is eventually erased with time.

3 If an attacker can extract signatures, he can isolate the input and add any output.

Enhancing Anonymity: We give some techniques to enhance anonymity via plausible deniability.

Joiners: To further enhance anonymity, we propose the notion of joiners as follows. The senders will leave
a certain amount of funds free for their peers (this is additional to the transaction fee). This transaction is
called partial and the free funds are the joining bonus. Peers receiving any transaction with free funds can
add their addresses as outputs and claim the joining bonus to make the transaction full. The joining bonus
is not specifically marked to make it indistinguishable from normal funds. Given a full transaction, it should
not be possible to distinguish which outputs consume the joining bonus.

Even with access to the individual transactions, it would still be impossible to prove with certainty that
the sender indeed sent those funds to some given output, since it is possible that the outputs were added
later on by a joiner. To ensure that transaction fees don’t get consumed by joiners, a special output can be
used for transaction fees. To prevent a flood of full transactions from different joiners for the same partial
transaction, a spender/peer should broadcast a partial transaction to only to one peer. Once the transaction
is full, it will be broadcast to the network. Clients attempting to disrupt the network by broadcasting partial
transaction will be handled as explained below in the section on transaction pool management.

Merging services: A merging service accepts various transactions from clients and once sufficient of them
are obtained, it merges them by aggregating the signatures before broadcasting to the network. Clients
attempting to disrupt the network by sending the same transactions to multiple merging services will be
handled in a similar way as for joiners.

The Knapsack problem: Note that given a ‘merged’ or ‘joined’ transaction, it may still be possible to deduce
some input-output relationships by analyzing the amount of funds going in and out. We use the knapsack
problem to hide this information. The knapsack problem [3,21,20] can be described as follows. Given a
positive rational number X and a set W of positive rational numbers wy, wa, ...w,, find a subset S of W (if
it exists) whose elements sum to X . This problem is known to be NP-Hard (given sufficient size of W). The
hardness of the problem can be additionally used to increase anonymity as follows. The recipient generates
a number of addresses to receive funds into. The sender randomly splits the funds into those addresses
and broadcasts the transaction. Other joiners or merging services may add further transactions to it, also
generated via the knapsack problem. Given a block of several such transactions, finding the input-output
linkages in that block is a hard problem. Note that the knapsack problem is pseudo-polynomial time; that
is, the complexity is O(nW). However, we observe that the knapsack instances can be generated such that
there are multiple solutions, giving plausible deniability.

Transaction pool management: Referring to the joiner protocol above, suppose a malicious peer trans-
mits a partial transaction tx = A to j joiners, where A is a set of inputs and outputs. This will result in
multiple full transactions AB1, ABy, ... AB;, one for each joiner. Since an output can only be used once,
only one of these transactions will be accepted. In such a situation, a peer will reject all new transactions,
while a miner could pick one that maximizes fees.

5 One-Way Aggregate Signatures (OWAS)
Our modified protocol uses a primitive called OWAS, which we describe here.

Message-descriptor: A message-descriptor is a set {(mq, pk1), (m2, pka),. .., (Mn, pk,)} of (message, public-
key) pairs.
Algorithms. An OWAS scheme has four algorithms:

1. KeyGen(K) The algorithm takes in a security parameter K and outputs a (public-private) key pair
pk, sk.

2. Sign(sk,m) The algorithm takes in a private key sk and a message m. It outputs a single-key signature
o. This single-key signature is equivalent to an aggregate signature on the single pair {(m, pk)}

3. Aggregate(({1,01), ({2,02)) The algorithm takes in two (message-descriptor, signature) pairs. If both
signatures are valid and £, Nfy = (), it outputs an aggregate signature o on the message-descriptor £1 U/s,
otherwise it outputs an error symbol L. Validity is checked by the Verify algorithm below.

4. Verify(¢, o) The algorithm takes in a message descriptor

l= {(mlvpkl)v (mg,pk2>, s (mmpkn)}7

and o, a purported aggregate signature on . If the messages in ¢ are not unique, the algorithm outputs
Invalid. Otherwise it invokes a deterministic poly-time procedure and outputs either Valid or Invalid.

Security Security is defined using the following interaction with a forger A.

1. Setup: A chooses n. We generate n (public-private) keypairs {(pk;, sk;)}ic[1..n) With security parameter
K. We give the set PK = {pk;}ic[1..n to A.

2. Queries: A makes up to « sign queries. Each sign query ¢ consists of £;, a message-descriptor with public
keys from PK. If the pairs in ¢; are unique, we respond with an aggregate signature on /¢;, otherwise we
return the error symbol L. Let L be the set of message-descriptors in all sign queries.

3. Output: A outputs (£4,04), a purported (message-descriptor, signature) pair possibly containing public
keys not from PK. Let PK 4 = {pk|(m,pk) € £4}. A wins if the following conditions hold:

(a) Verify(£4,04) = Valid.
(b) The set PK N PK 4 is non-empty.
(¢c) €4 is not signable (Def. 1 below).

Notation: Let £y = {(m,pk)|(m,pk) € €4 Apk € PK}. Assign a unique prime number to each element of
the set {(m,pk)|((m,pk) € ¢ A€ € L)V (m,pk) € ¢/4}. Then each ¢ € L corresponds to a unique integer
integer(£) obtained by multiplying the primes corresponding to its constituent (m, pk) pairs. Let Z be the
set {integer(¢)|¢ € L}. Let z4 = integer(¢y), obtained by multiplying the primes corresponding to ¢/.

Definition 1 (Signable Set) The set L4 is signable iff there exists a solution in non-negative integers
x; to the equation z4 = H z

z2, €Z
In a weaker notion, we allow integer solutions. We call this weakly signable.

Ezample. Suppose L = {{1,{3, {3}, with €1 = {(m1,pk1), (m2,pk2)}, L2 = {(ma2,pk2), (ms,pks)} and
U5 = {(ms3,pks), (ma,pka)}. Let £y = {(mq,pk1), (mq, pks)}. Let us assign the primes as: (mq,pki) —
2, (ma,pka) — 3, (ms,pks) — 5, (my,pks) — 7. We have Z = {6,15,35} and z4 = 14. Then £, is weakly
signable because 14 = 6 - 151 - 35. However, £, is not signable since there are no solutions in non-negative
integers to 14 = 6% - 15%2 - 3573,

Observe that the signable sets form a monoid under the signature aggregation operation, while the weakly
signable sets form a group. The signable sets are exactly those sets that can be generated by aggregating
the collected signatures using this operation.

Definition 2 An OWAS scheme { KeyGen, Sign, Aggregate, Verify} is secure if for sufficently large K, there
is mo probabilistic poly-time A that wins with non-negligible advantage in K.

Intuition: In the above definition, aggregation of signatures is represented by multiplication of the primes.
The game captures the fact that it is possible to generate new signatures by aggregating smaller signatures
(represented by signable numbers - obtained by multiplying elements of Z). Furthermore, it may additionally
be possible to generate new signatures by ‘reversing the aggregation algorithm’ when only one input is
unknown (represented by weakly signable numbers - obtained by multiplying and dividing elements of Z).

Construction. Our OWAS construction is derived from the aggregate signatures of [5] by appending the
public key and a random string to the message.

Bilinear pairing: Let G and G4 be two cyclic multiplicative groups both of prime order ¢. A bilinear pairing
is a map é : G1 x G1 — G4 satisfying:

— Bilinearity: é(a”,bY) = é(a,b)™ Va,b € Gy and z,y € Z,.
— Non-degeneracy: If g is a generator of G; then é(g, g) is a generator of Gs.
— Computability: The map é is efficiently computable.

We require a case where the discrete logarithm problem in G; is believed to be hard. Such bilinear
pairings are known to exist (see [5]). Our security depends on the hardness of the following problem in Gi:

Computation Diffie-Hellman (CDH) problem: Given ¢, g¥ for a generator g of G; and unknowns z,y € Z,,
compute g*V.

Algorithms: Select a security parameter . Let é : G1 X G — G2 be a bilinear map over groups (G1,G2) of
prime order ¢, and g be a generator of G1. Denote by X' the alphabet {0,1}. Let H : X* x X" x G; — Gy
be a cryptographic hash function. These parameters are public.

1. KeyGen: The private key is x & Zq and the public key is pk = ¢* € G;.
2. Sign: To sign a message m under the above public key pk, generate r & 5% and compute the signature
o€ (Gy,X") as:
o= (H(m,r,pk)*,r)

3. Aggregate: Two (message-descriptor, signature) pairs, ({1, 01), (2, 02) are given. Ensure that Verify(¢,07)
= Verify({2,02) = valid and ¢; N ¢y = (). Then parse o1 and oy as (o1, R1) and (o}, Re) respectively
and compute the aggregate signature o on ¢ U ¢y as 0 = (o405, R1 U Rs).

4. Verify(¢,c): Here £ = {(my, pk1), (ma, pka), ..., (mk, pki)} is a message-descriptor of length k and o is
a purported aggregate signature on ¢. To verify o, first ensure that all pairs are distinct. Then parse o
as (0!, {r1,m2,...,76}) € G1 x (£%)F and check that the following holds:

k
é(o',g) = [] e(H (ma, i, pki), pk:)
i=1

Verification works because:

n

k n
=1 =1 =1

Security: Security is based on the hardness of the CDH problem (Theorem 1).

Theorem 1. Let H be a random oracle and let € be the probability of an attacker breaking the OWAS scheme

after making at most o sign queries and at most v queries to H, such that the forgery contains at most 3

keys. Then we can solve the CDH problem in G with probability > § (1 — aglfl)na.

The proof of Theorem 1 is given in Appendix A.

6 Using OWAS in Cryptocurrencies

As discussed earlier, OWAS can be used to enhance anonymity in cryptocurrencies (such as Bitcoin) by
unlinking the input and output addresses from where funds move. We summarize the ideas below.

In Bitcoin transactions, the sending addresses (i.e., public keys) are linked to the other sending addresses
and receiving addresses in a transaction. This link is ‘hard’ in the sense that it provides a cryptographic
proof of funds transfer between those addresses. For example, suppose owner of address pk; wants to transfer
1 bitcoin to address pks. The transaction will be the message “Take 1 Bitcoin from pk;; Put 1 Bitcoin
in pko”, signed under the public key pk;. This transaction cryptographically links the addresses pk; and
pks. The owner of pk; cannot later deny sending the funds to pks.

Using OWAS, we can increase the anonymity significantly by removing all linkages from the sending and
receiving addresses. This is possible because the aggregation process in OWAS is one-way. That is, once
aggregated, the the individual signatures cannot be recovered. This allows senders to sign messages releasing
funds without mentioning the receiving addresses or other sending addresses. Using OWAS, the transaction
in the above example will consist of two messages (1) the message “Take 1 Bitcoin from pk;” signed
under pki, and (2) the message “Put 1 Bitcoin in pks” signed under a randomly generated public key
(which we call the masking key). The two signatures will then be combined into one aggregate signature and
broadcast to the network. Other peers may add more signatures from their transactions before broadcasting
further (to increase unlinkability). Since individual signatures in an OWAS cannot be extracted, the above
aggregate signature serves as a secure record of the transaction, despite the fact that messages do not contain
references to other public keys. When presented with a transaction, senders can claim plausible deniability,
since the OWAS does not serve as a cryptographic proof of knowledge of the receiving addresses.

We additionally proposed the use of ‘joiners’, ‘merging services’ and the knapsack problem [21] to further
obfuscate the input-output linkages in a block. If multiple transactions are generated via the knapsack
problem and combined together, it is a hard to infer the input-output relations if there are multiple solutions
to the resulting knapsack.

7 Integrating with Bitcoin

OWAS implementation: The modified transactions described here use OWAS instead of ordinary signa-
tures (such as ECDSA). The construction of OWAS presented here uses bilinear pairings on elliptic curves.
Cryptography based on such bilinear pairings is called Pairing-Based Cryptography (PBC) [22-24]. Any
efficiently computable bilinear pairing where the Diffie-Hellman problem is believed to be hard is suitable
for our OWAS construction. Currently several such pairings are known, such as the Weil pairing [25, 26], the
Tate-Lichtenbaum pairing [27], the Eta Pairing [28] and the Ate pairing [29]. Libraries for PBC are available
in C [30] and Java [31, 32].

Efficiency: Public keys are elements of G, which are elements of a suitable finite field. Based on [33, 34], such
elements can be represented in about 30 bytes for 128 bits of security. The signatures constitute one group
element and n k-bit strings (the random rs). The size of signatures increases linearly. Below we consider
the possibility of using a weaker scheme where these rs are removed. Signature verification requires several
pairing computations, which can be performed fairly efficiently [33,34] (< 10 ms on a Pentium).

Increasing efficiency: Our OWAS construction extends the aggregate signature construction of [5] by con-
verting it into a probabilistic scheme using a random string r in the signature. The signatures of [5] are
constant-size (about 30 bytes) because the r is not included. However, they do not satisfy OWAS security
of Def. 2. In practice, however, a weaker security notion is sufficient. In the weaker notion we require the
forgery ¢4 to be not weakly signable (Def. 1). We posit that the construction of [5] is secure in this weaker
sense. Furthermore, for our application, an even weaker form of security - the non-adaptive case - should be
sufficient. This requires the adversary to output a forgery after making only one sign query. The signatures
of [5] satisfy this model [6]. Therefore, we envisage the construction of [5] to be used in our application.

10

Based on above parameters, transaction size is comparable to that in the existing protocol. In order
to verify transactions/blocks created via OWAS, all relevant masking keys need to be available. These can
either be part of the payload or kept in a publicly searchable database (with hashes as payloads).

It is possible for our modified protocol to co-exist with the current protocol. We simply add the new
type of transaction output based on OWAS. These types of outputs can be mixed with standard outputs.
An OWAS-based output will be spent using the new protocol described here. A transaction can even be
constructed using a mix of these outputs. We leave the engineering details for a future article.

8 Conclusion and Future Work

Bitcoin is a popular peer-to-peer cryptocurrency with a weak form of anonymity. We presented an enhance-
ment of the Bitcoin protocol to increase anonymity. Our method is based on a new cryptographic primitive
known as One-Way Aggregate Signatures (OWAS). OWAS are an extension of Boneh et al.’s aggregate
signatures [5] and have the property that multiple signatures can be aggregated into one signatures such
that once aggregated, the individual signatures cannot be recovered. We gave the security model of OWAS
and presented a construction with a security proof under the random oracle model and the computational
Diffie-Hellman assumption in bilinear maps. We also presented a weaker notion of OWAS (using the weakly
signable set - Def. 1), which may be interesting because the publicly computable signatures exhibit a group
structure.

OWAS can be used to enhance anonymity in cryptocurrencies such as bitcoin by unlinking the input
and output addresses from where funds move. Current implementation of Bitcoin requires that the sending
addresses (i.e., public keys) are linked to the other sending addresses and receiving addresses in a transaction.
This link is ‘hard’ in the sense that it provides a cryptographic proof of funds transfer between those addresses.
We use OWAS to remove all linkages from the sending and receiving addresses. This enables senders to sign
messages releasing funds without mentioning the receiving addresses or other sending addresses, thereby
providing plausible deniability. Additionally, several transactions can be combined into one large transaction
(possibly via the knapsack problem) in order to further obfuscate the links.

References

1. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

2. Sergio Martins and Yang Yang. Introduction to bitcoins: a pseudo-anonymous electronic currency system. In
Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative Research, CASCON ’11,
pages 349-350, Riverton, NJ, USA, 2011. IBM Corp.

3. David Pisinger. Where are the hard knapsack problems. Computers and Operations Research, 32, 2005.

4. Wenbo Mao and Kenneth G. Paterson. On the plausible deniability feature of internet protocols. http://isg.
rhul.ac.uk/~kp/IKE.ps, 2002.

5. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In EUROCRYPT, pages 416-432, 2003.

6. Jean-Sébastien Coron and David Naccache. Boneh et al.’s k-element aggregate extraction assumption is equivalent
to the Diffie-Hellman assumption. In ASTACRYPT, pages 392-397, 2003.

7. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signatures from
trapdoor permutations. In FUROCRYPT, pages 74-90, 2004.

8. Huafei Zhu, Feng Bao, Tieyan Li, and Yongdong Wu. Sequential aggregate signatures for wireless routing
protocols. In Wireless Communications and Networking Conference, 2005 IEEFE, volume 4, pages 24362439 Vol.
4, 2005.

9. Di Ma. Practical forward secure sequential aggregate signatures. In Masayuki Abe and Virgil D. Gligor, editors,
ASIACCS, pages 341-352. ACM, 2008.

10. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures and identity-
based sequential aggregate signatures, with applications to secure routing. In CCS ’07: Proceedings of the 14th
ACM conference on Computer and communications security, pages 276-285, New York, NY, USA, 2007. ACM.

11. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate signatures and
multisignatures without random oracles. In EUROCRYPT, pages 465—485, 2006.

11

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

Marc Fischlin, Anja Lehmann, and Dominique Schrder. History-free sequential aggregate signatures. In Ivan
Visconti and Roberto Prisco, editors, Security and Cryptography for Networks, volume 7485 of Lecture Notes in
Computer Science, pages 113-130. Springer Berlin Heidelberg, 2012.

Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures with lazy verification from
trapdoor permutations. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology ASIACRYPT 2012,
volume 7658 of Lecture Notes in Computer Science, pages 644—662. Springer Berlin Heidelberg, 2012.

Amitabh Saxena and Ben Soh. One-way signature chaining: A new paradigm for group cryptosystems. Interna-
tional Journal of Information and Computer Security, 2(3):268-296, 2008.

E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S Capkun. Evaluating user privacy in bitcoin. Cryp-
tology ePrint Archive, Report 2012/596, 2012.

Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In Yaniv Altshuler, Yuval
Elovici, Armin B. Cremers, Nadav Aharony, and Alex Pentland, editors, Security and Privacy in Social Networks,
pages 197-223. Springer New York, 2013.

Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transaction graph. Cryptology ePrint Archive,
Report 2012/584, 2012. http://eprint.iacr.org/.

Nicolas Christin. Traveling the silk road: A measurement analysis of a large anonymous online marketplace.
CoRR, abs/1207.7139, 2012.

Zerocoin: Anonymous distributed e-cash from bitcoin, 2012.

Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computa-
tional Complezity, 16(4):365-411, December 2007. Prelim. in FOCS 2002.

Vasek Chvatal. Hard knapsack problems. Operations Research, 28(6):1402-1411, 1980.

Ratna Dutta, Rana Barua, and Palash Sarkar. Pairing-based cryptographic protocols: A survey. In In Cryptology
ePrint Archive, Report 2004,/064, 2004.

Alfred Menezes. An introduction to pairing-based cryptography. notes from lectures., 2005.

Michel Abdalla and Tanja Lange, editors. Pairing-Based Cryptography - Pairing 2012 - 5th International Confer-
ence, Cologne, Germany, May 16-18, 2012, Revised Selected Papers, volume 7708 of Lecture Notes in Computer
Science. Springer, 2013.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput.,
32(3):586—615, 2003.

Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, 17(4):235-261, 2004.
Yukihiro Uchida and Shigenori Uchiyama. The Tate-Lichtenbaum pairing on a hyperelliptic curve via hyperelliptic
nets. In Michel Abdalla and Tanja Lange, editors, Pairing-Based Cryptography Pairing 2012, volume 7708 of
Lecture Notes in Computer Science, pages 218-233. Springer Berlin Heidelberg, 2013.

F. Hess, N.P. Smart, and F. Vercauteren. The Eta pairing revisited. Information Theory, IEEE Transactions
on, 52(10):4595-4602, 2006.

Chang-An Zhao, Fangguo Zhang, and Jiwu Huang. A note on the Ate pairing. Cryptology ePrint Archive, Report
2007/247, 2007. http://eprint.iacr.org/.

Stanford Crypto Group Ben Lynn. Pbc library, 2010.

A. De Caro and V. Iovino. jpbc: Java pairing based cryptography. In Proceedings of the 2011 IEEE Symposium
on Computers and Communications, ISCC 11, pages 850-855, Washington, DC, USA, 2011. IEEE Computer
Society.

A. De Caro and V. Iovino. Java pairing based cryptography library (jPBC), 2012.

Naoyuki Shinohara, Takeshi Shimoyama, Takuya Hayashi, and Tsuyoshi Takagi. Key length estimation of pairing-
based cryptosystems using n'T pairing. In Proceedings of the 8th international conference on Information Security
Practice and Ezperience, ISPEC’12, pages 228-244, Berlin, Heidelberg, 2012. Springer-Verlag.

Michael Scott. Scaling security in pairing-based protocols. TACR Cryptology ePrint Archive, 2005:139, 2005.

A Proof of Theorem 1

Proof. Let g, g%, g € G1 be the given CDH instance we need to solve (our goal is to compute g®¥). We show
how to solve this using A as a black-box.

Setup: We generate ay,aq,...a, pia Z4 and set the target public keys as pk; = g®T% for 1 < i < n. The

set PK = {pki}ici1..n is given to A.

12

H-list: A can query the random oracle H on points from X* x X% x (G;. To respond to such queries, we
maintain a list called the H-list, which is initially empty and contains tuples of the type

(m,r,pk,h,b,c,d) € Z* x X% x G1 x G1 X Zg X Ly X %1,

such that h = ¢g°®*° always holds.

H-Queries: On H(m;,r;, pk;) query, if a tuple (my,r;, pki, hi, b, ¢;, d;) exists in the H-list, we respond
with h; = H(m,,r;, pk;), otherwise we add such an entry as follows. We generate b; ¥id Z4 uniformly and set
d; = 1. If pk; ¢ PK, we set ¢; = 0, otherwise we set ¢; = 1. Finally we set h; = ¢“YT% and respond with
h; = H(m,r;,pk;). In effect, we compute h; as follows:

1. If pk; ¢ PK, we set h; = g%.
2. If pk; € PK, we set h; = gbity.

Sign queries: Let ¢ = ((my,pky), (ma, pka), ... (mg, pki)) be any sign query for k& < n. To respond to

this, we generate k random numbers rq,72,...7% & 5% and for each i € [1..k] we check the H-list for entries
starting with (mg, r;, pk;). If any such entry exists, we report failure and abort, otherwise we add the entries

as follows. We uniformly select k pairs ((c1,d1), (c2,dz), . .. (ck,dr)) € (Zox £1) such that Zle c¢id; = 0and

k— Zle ¢; € Zo. The latter says that at most one of the ¢;s can be 0.4 We then generate by, b, . .. by £ ZLq
and for each i € [1..k], we set h; = %%+ We add (my, 74, pki, hi, bs, ¢i, d;) to the H-list.

Let o/ = ng:1(1+ai)(cidiy+bi) = g% Yiieidi+ X wbitaicidiytaibi We know that Zle cid; = 0 (by
construction). Therefore, o/ = gE§=1 wbitaicidiytaibi 5 value that can be computed by us. Also, o0 =
(o/,{r1,72,...7}) is a valid signature on ¢, which is our response to the query.

Output: Finally, A outputs a pair (c4,¢4). If 04 is not a valid forgery on £ 4, we report failure. Let PK 4
be the set of public keys in this forgery. Some of these keys may not be from PK. Let PK# = PK 4 \ PK
and PK* = PK N PKy4.

By construction, all ¢;s in the H-list corresponding to the messages signed under PK# are 0. Therefore,
the respective b;s are the discrete logarithms (to base g) of the corresponding h;s. Hence, we can compute
the sub-aggregate signature corresponding to the messages of PK*, denoted by o, (we compute this by first
computing the sub-aggregate signature corresponding to the messages of PK# and “dividing” o4 by that).

Let ((af,bi,c5,dy),. .., (af, b5, chn, dfs)) be tuples containing a;s and H-list entries corresponding to
PK*. If Zf; cidf = 0, we report failure and abort, otherwise o, corresponds to a signature we could
not have computed ourselves, which can be used to solve the CDH problem as follows. We know that
o, = (o, {rt,...r1.}) such that o’ — ¢S ral) (e diy b)) = gey S efd] | oS ab] tafeldiytalbl — gay
for some nonzero w and z that we know. Using this, we can compute g*¥ = (o, /w)'/%.

It now remains to bound the probability of success. Define events:

— & = We do not abort during sign queries.
— & =& and A outputs a successful forgery.
— & =& and S erdr £ 0.

i=1"1"1
Then Pr[success] = Pr[€3|&s] - Pr[€2|&1] - Pr[é&y].
Claim 1 Pr[&] > (1 — %)na

Proof. Consider the number of entries in the H-list corresponding to a given (message, public-key) pair
(m, pk). Each H-query can add at most one entry to the H-list for this pair. Since a sign query can contain
at most one instance of the pair (m, pk), therefore, each sign query can add at most one entry in the H-list
for this pair. Therefore there can be a maximum of « 4+ — 1 entries in the H-list corresponding to (m, pk).

4 These pairs can be generated as follows. First set all ¢;s to 1. If k is odd, randomly set one of the ¢;s to 0. Then
for those c¢;s that are 1, randomly set half of the d;s to +1 and the rest to —1.

13

Now select » £ 5% and consider the event that an entry beginning with (m, r, pk) exists in the H-list. Since
there are 2 possible ways to select r, we can be assured that Pr[no entry in H-list for (m,r,pk)] > 1— %ﬁfl
Now there can be maximum n pairs in a sign query. Therefore, Pr[we do not abort in one sign query] >
(1 — %)n, and so

a+vy—1\"
oK

Pr[&;] = Pr[we do not abort after at most « sign queries] > (1 -

Claim 2 Pr[&|&] =e.

Proof. If we do not abort during sign queries, then the view of the adversary is identical to a real simulation,
and it follows that Pr[&;]&:] = e. m]

Claim 3 Pl"[g3|82] Z 1/3
Proof. Split the H-list entries into two disjoint sets based on how they are generated:

1. Sp: Via sign queries on a single (message, public-key) pair. Here Pr[c = 0] = 1.
2. Sy: Via H-queries or via sign queries on two or more (message, public-key) pairs. It can be checked that
Pr[c = 0] < 1/3 for such entries.”

Let the forgery contain k* (message, public-key) pairs. Let {(mj, 7], pky)}ien..k+) be the set of tuples
corresponding to the forgery. We ensure that an entry for each tuple exists in the H-list (by simulating
H-queries ourselves if necessary).

Lemma 1. If the forgery is valid (i.e., £ 4 is not signable), then at least one of the tuples in the forgery must
must correspond to an element of Ss.

Proof. 1f all tuples {(m], 7}, pk})}ieq..x+ in the forgery correspond to elements from Sp, then A made sign
queries on every pair (m},pk}), possibly more than once. By definition, £4 is signable. Hence the forgery
cannot be valid. O

For any signature oy from the sign queries or the forgery, define f(oy) = Zle ¢;d;, obtained from
corresponding entries (m;, r;, pki, hq, b;, ¢;, d;) in the H-list. A’s goal is to maximize Pr[—&5|2] = Pr[f(o.) =
0], knowing that f(oy) = 0 for all sign queries.

Since we did not abort during the sign queries, each tuple (m},r}, pk}) was used in at most one sign
query. Therefore A’s view of any of the ¢}s for tuples from S, is independent of any queries. Extending
Lemma 1, we can see that if £4 is not signable, then A’s view of f(o,) is independent of all queries. An
upper bound for Pr[—&;3|&;] then gives us the worst case scenario.

Having tuples from S; in the forgery is not useful for A, since ¢; = 0 for such values and so f(o,) is
independent of them. Therefore, assume that A’s forgery contains only elements from S;. Now Sy can be
further divided into: (1) S} consisting of entries due to H-queries and (2) S4 consisting of entries due to sign
queries. Since for elements of S5, the d;s are uniformly distributed between +1, while for those of S5, the d;s
are guaranteed to be +1, a symmetric argument shows that including elements from S5 is not beneficial to A
since it only biases f(o.) towards nonzero. Therefore, assume that A’s forgery contains only elements from
S4. It can be experimentally verified that, if all elements are from S%, then Pr[f(c.) = 0] < 2/3, with the
maximum occurring when A extracts a 2-tuple signature from a 4-tuple signature. Hence Pr[€3|E2] > 1/3 O

This proves Theorem 1. a

5 If the entry is due to an H-query or a sign query on even number of pairs, then Pr[c = 0] = 0. If it is via a sign
query on odd number of pairs, then Pr[c = 0] = 1/k*.

14

