
ar
X

iv
:1

50
7.

06
18

3v
2

 [
cs

.C
R

]
 2

3
Ju

l 2
01

5

Optimal Selfish Mining Strategies in Bitcoin

Ayelet Sapirshtein1, Yonatan Sompolinsky1, and Aviv Zohar1,2

1 School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

2 Microsoft Research, Herzliya, Israel
{ayeletsa,yoni sompo,avivz}@cs.huji.ac.il

Abstract. Bitcoin is a decentralized crypto-currency, and an accom-
panying protocol, created in 2008. Bitcoin nodes continuously generate
and propagate blocks—collections of newly approved transactions that
are added to Bitcoin’s ledger. Block creation requires nodes to invest
computational resources, but also carries a reward in the form of bit-
coins that are paid to the creator. While the protocol requires nodes
to quickly distribute newly created blocks, strong nodes can in fact gain
higher payoffs by withholding blocks they create and selectively postpon-
ing their publication. The existence of such selfish mining attacks was
first reported by Eyal and Sirer [9], who have demonstrated a specific
deviation from the standard protocol (a strategy that we name SM1).
In this paper we extend the underlying model for selfish mining attacks,
and provide an algorithm to find ǫ-optimal policies for attackers within
the model, as well as tight upper bounds on the revenue of optimal
policies. As a consequence, we are able to provide lower bounds on the
computational power an attacker needs in order to benefit from selfish
mining. We find that the profit threshold – the minimal fraction of re-
sources required for a profitable attack – is strictly lower than the one
induced by the SM1 scheme. Indeed, the policies given by our algorithm
dominate SM1, by better regulating attack-withdrawals.
Our algorithm can also be used to evaluate protocol modifications that
aim to reduce the profitability of selfish mining. We demonstrate this
with regard to a suggested countermeasure by Eyal and Sirer, and show
that it is slightly less effective than previously conjectured. Next, we gain
insight into selfish mining in the presence of communication delays, and
show that, under a model that accounts for delays, the profit threshold
vanishes, and even small attackers have incentive to occasionally deviate
from the protocol. We conclude with observations regarding the com-
bined power of selfish mining and double spending attacks.

1 Introduction

In a recent paper, Eyal and Sirer [9] have highlighted a flaw in the incentive
scheme in Bitcoin. Given that most of the network follows the “standard” Bit-
coin protocol, a single node (or a pool) which possesses enough computational
resources or is extremely well connected to the rest of the network can increase
its expected rewards by deviating from the protocol. While the standard Bitcoin

http://arxiv.org/abs/1507.06183v2

protocol requires nodes to immediately publish any block that they find to the
rest of the network, Eyal and Sirer have shown that participants can selfishly
increase their revenue by selectively withholding blocks. Their strategy, which
we denote SM1, thus shows that Bitcoin as currently formulated is not incentive
compatible.

On the positive side, SM1 (under the model of Eyal and Sirer) becomes
profitable only when employed by nodes that posses a large enough share of the
computational resources, and are sufficiently well connected to the rest of the
network.3 It is important to note, however, that SM1 is not the optimal best-
response to honest behaviour, and situations in which SM1 is not profitable may
yet have other strategies that are better than strict adherence to the protocol.
Our goal in this paper is to better understand the conditions under which Bitcoin
is resilient to selfish mining attacks. To this end, we must consider other possible
deviations from the protocol, and to establish bounds on their profitability.

The role of incentives in Bitcoin should not be underestimated: Bitcoin trans-
actions are confirmed in batches, called blocks whose creation requires generating
the solution to computationally expensive proof-of-work “puzzles”. The security
of Bitcoin against the reversal of payments (so-called double spending attacks)
relies on having more computational power in the hands of honest nodes. Block
creation (which is also known as mining), is rewarded in bitcoins that are given
to the block’s creator. These rewards incentivize more honest participants to in-
vest additional computational resources in mining, and thus support the security
of Bitcoin.

When all miners follow the Bitcoin protocol, a single miner’s share of the
payoffs is equal to the fraction of computational power that it controls (out
of the computational resources of the entire network). However, Selfish mining
schemes allow a strong attacker to increase its revenue at the expense of other
nodes. This is done by exploiting the conflict-resolution rule of the protocol,
according to which only one chain of blocks can be considered valid, and only
blocks on the valid chain receive rewards; the attacker creates a deliberate fork,
and (sometimes) manages to force the honest network to abandon and discard
some of its blocks.

The consequences of selfish mining attacks are potentially destructive to the
Bitcoin system. A successful attacker becomes more profitable than honest nodes,
and is able to grow steadily.4 It may thus eventually drive other nodes out of
the system. Profits from selfish mining increase as more computational power is
held by the attacker, making its attack increasingly effective, until it eventually
holds over 50% of the computational resources in the network. At this point, the
attacker is able to collect all block rewards, to mount successful double spending
attacks at will, and to block any transaction from being processed (this is known
as the 50% attack).

3 This can partly explain why selfish mining attacks have not been observed in the
Bitcoin network thus far.

4 Growth is achieved either by buying more hardware, in the case of a single attacker,
or by attracting more miners, in the case of a pool.

We summarize the contributions of this paper as follows:

1. We provide an efficient algorithm that computes an ǫ-optimal selfish mining
policy for any ǫ > 0, and for any parametrization of the model in [9] (i.e.,
one that maximizes the revenue of the attacker up to an error of ǫ, given that
all other nodes are following the standard Bitcoin protocol). We prove the
correctness of our algorithm and analyze its error bound. We further verify
all strategies generated by the algorithm in a selfish mining simulator that
we have designed to this end.

2. Using our algorithm we show that, indeed, there are selfish mining strategies
that earn more money and are profitable for smaller miners compared to
SM1. The gains are relatively small (see Fig. 1 below). This can be seen
as a positive result, lower bounding the amount of resources needed for a
profitable attacker.

3. Our technique allows us to evaluate different protocol modifications that were
suggested as countermeasures for selfish mining. We do so for the solution
suggested by Eyal and Sirer, in which miners that face two chains of equal
weight choose the one to extend uniformly at random. We show that this
modification unexpectedly enhances the power of medium-sized attackers,
while limiting strong ones, and that unlike previously conjectured, attackers
with less than 25% of the computational resources can still gain from selfish
mining.

4. We show that in a model that accounts for the delay of block propagation
in the network, the threshold vanishes: there is always a successful selfish
mining strategy that earns more than honest mining, regardless of the size
of the attacker.

5. We discuss the interaction between selfish mining attacks and double spend-
ing attacks. We demonstrate how any attacker for which selfish mining is
profitable can execute double spending attacks bearing no costs. This sheds
light on the security analysis of Satoshi Nakamoto [14], and specifically, on
the reason that it cannot be used to show high attack costs, and must instead
only bound the probability of a successful attack.

Below, we depict the results of our analysis, namely, the revenue achieved by
optimal policies compared to that of SM1 as well as the profit threshold of the
protocol. In the following, α stands for the attacker’s relative hashrate, and γ
is a parameter representing the communication capabilities of the attacker: the
fraction of nodes to which it manages to send blocks first in case of a block race
(see Section 2 for more details). Figure 1 depicts the revenue of an attacker under
three strategies: Honest mining, which adheres to the Bitcoin protocol, SM1, and
the optimal policies obtained by our algorithm. The three graphs correspond to
γ = 0, 0.5, 1. We additionally illustrate the curve of α/(1−α), which is an upper
bound on the attacker’s revenue, achievable only when γ = 1 (see Section 3).
Figure 2 depicts the profit threshold for each γ: If the attacker’s α is below the
threshold then Honest mining is the most profitable strategy. For comparison,
we depict the thresholds induced by SM1 as well.

α
(fraction of hashrate)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
ρ

(r

ev
en

ue
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SM1

Honest mining

α / (1-α)
eps-OPT policy

Upper-bound

(a) γ = 0

α
(fraction of hashrate)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ρ

(r

ev
en

ue
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SM1

Honest mining

α / (1-α)
eps-OPT policy

Upper-bound

(b) γ = 0.5

α
(fraction of hashrate)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ρ

(r

ev
en

ue
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SM1

Honest mining

α / (1-α)
eps-OPT policy

Upper-bound

(c) γ = 1

Fig. 1. The ǫ-optimal revenue and the computed upper bound, as a function of the
attacker’s hashrate α, compared to SM1, honest mining, and to the hypothetical bound
provided in Section 3. The graphs differ in the attacker’s communication capability, γ,
valued 0, 0.5, and 1. The gains of the ǫ-optimal policies are very close to the computed
upper bound, except when α is close to 0.5, in case which the truncation-imposed loss
is apparent. See also Table 2.

γ

0 0.05 0.1 0.15 0.2 0.25

pr
of

it
th

re
sh

ol
d

0.300

0.305

0.310

0.315

0.320

0.325

0.330

0.335
optimal policies
SM1

Fig. 2. The profit thresholds induced by optimal policies, and by SM1, as a function
of γ. Thresholds at higher γ values match that of SM1 (but still, optimal strategies for
these values earn more than SM1, once above the threshold).

The remainder of the paper is structured as follows: We begin by presenting
our model, based principally on Eyal and Sirer’s [9] (Section 2). Section 3 shows
a theoretical bound on the attacker’s revenue. In Section 4 we describe our
algorithm to find optimal policies and values. In Section 5 we discuss more
results, e.g., the optimal policies. Section 6 analyzes selfish mining in networks
with delays. Section 7 discusses the interaction between selfish mining and double
spending. We conclude with discussing related work (Section 8).

2 Model

We follow and extend the model of [9], to explicitly consider all actions available
to the attacker at any given point in time.

We assume that the attacker controls a fraction α of the computational power
in the network, and that the honest network thus has a (1 − α) fraction. Com-
munication of newly created blocks is modeled to be much faster than block
creation, so no blocks are generated while others are being transmitted.5

Blocks are created in the network according to a Poisson process with rate
λ. Every new block is generated by the attacker with probability α, or by the
honest network with probability (1−α). The honest network follows the Bitcoin
protocol, and always builds its newest block on top of the longest known chain.

5 This is justified by Bitcoin’s 10 minute block creation interval which is far greater
than the propagation time of blocks in the network. This assumption is later removed
when we consider networks with delay.

Once an honest node adopts a block, it will discard it only if a strictly longer
competing chain exists. Ties are thus handled by each node according to the
order of arrival of blocks. Honest nodes immediately broadcast blocks that they
create.

Blocks generally form a tree structure, as each block references a single pre-
decessor (with the exception of the first block that is called the genesis block).
Since the honest nodes adopt the longest chain, blocks generate rewards for their
creator only if they are eventually part of the longest chain in the block tree (all
blocks can be considered revealed eventually).

To model the communication capabilities of the attacker, we assume that
whenever it learns that a block has been released by the network, it is able
to transmit an alternative block which will arrive first at nodes that possess a
fraction γ of the computational power of the honest network (the attacker must
have prepared this block in advance in order to be able to deliver it quickly
enough). Thus, if the network is currently propagating a block of height h, and
the attacker has a competing block of the same height, it is able to get γ · (1−α)
of the computational power (owned by honest nodes) to adopt this block.

The attacker does not necessarily follow the Bitcoin protocol. Rather, at any
given time t, it may choose to invest computational power in creating blocks that
extend any existing block in history, and may withhold blocks it has created
for any amount of time. A general selfish mining strategy dictates, therefore,
two key behaviours: which block the attacker attempts to extend at any time
t, and which blocks are released at any given time. However, given that all
block creation events are driven by memoryless processes and that broadcast
is modeled as instantaneous, any rational decision made by the attacker may
only change upon the creation of a new block. The mere passage of time without
block creation does not otherwise alter the expected gains from future outcomes.6

Accordingly, we model the entire decision problem faced by an attacker using a
discrete-time process in which each time step corresponds to the creation of a
block. The attacker is thus asked to decide on a course of action immediately
after the creation of each block, and this action is pursued until the next event
occurs.

Instead of directly modeling the primitive actions of block extension and
publication on general block trees, we can limit our focus to “reasonable” strate-
gies where the attacker maintains a single secret branch of blocks that diverged
from the network’s chain at some point. (We show that this limitation is war-
ranted and that this limited strategy space still generates optimal attacks in
Appendix A). Blocks before that point are agreed upon by all participants. Ac-
cordingly, we must only keep track of blocks that are after the fork, and of the
accumulated reward up to the fork. We denote by a the number of blocks that
have been built by the attacker after the latest fork, and by h the number of
those built by honest nodes.

Formally, if all other participants are following the standard protocol, the
attacker faces a single-player decision problem of the form M := 〈S,A, P,R〉,

6 See Section 6 for the implication of delayed broadcasting.

where S is the state space, A the action space, P a stochastic transition matrix
that describes the probability of transitioning between states, and R the reward
matrix. Though similar in structure, we do not regard M as an MDP, since the
objective function is nonlinear: The player aims to maximize its share of the
accepted blocks, rather than the absolute number of its own accepted ones; its
goal is to have a greater return-on-investment than its counterparts.7

Actions. We begin with the description of the action space A, which will moti-
vate the nontrivial construction of the state space.

• Adopt. The action adopt is always feasible, and represents the attacker’s
acceptance of the honest network’s chain. The a blocks in the attacker’s
current chain are discarded.
• Override. The action override represents the publication of the attacker’s
blocks, and is feasible whenever a > h.
• Match. This action represents the case where the most recent block was
built by the honest network, and the attacker now publishes a conflicting
block of the same height. This action is not always feasible (the attacker
must have a block prepared in advance to execute such a race). The state-
space explicitly encodes the feasibility status of this action (see below).
• Wait. Lastly, the wait action, which is always feasible, implies that the
attacker does not publish new blocks, but keeps working on its branch until
a new block is built.

State Space. The state space, denoted S, is defined by 3-tuples of the form
(a, h, fork). The first two entries represent the lengths of the attacker’s chain
and the honest network’s chain, built after the latest fork (that is, above the
most recent block accepted by all). The field fork obtains three values, dubbed
irrelevant, relevant and active. State of the form (a, h, relevant) means that
the previous state was of the form (a, h−1, ·); this implies that if a ≥ h, match is
feasible. Conversely, (a, h, irrelevant) denotes the case where the previous state
was (a − 1, h, ·), rendering match now ineffective, as all honest nodes received
already the h’th block. The third label, active, represents the case where the
honest network is already split, due to a previous match action; this information
affects the transition to the next state, as described below. We will refer to states
as (a, h) or (a, h, ·), in contexts where the fork label plays no effective role.

Transition and Reward Matrices. In order to keep the time averaging of
rewards in scale, every state transition corresponds to the creation of a new
block. The initial state X0 is (1, 0, irrelevant) w.p. α or (0, 1, irrelevant) w.p.
(1 − α). Rewards are given as elements in N

2, where the first entry represents
blocks of the attacker that have been accepted by all parties, and the second
one, similarly, for those of the honest network.

The transition matrix P and reward matrix R are succinctly described in
Table 1. Largely, an adopt action “resets” the game, hence the state following

7 Another possible motivation for this is the re-targeting mechanism in Bitcoin. When
the block creation rate in the network is constant, the adaptive re-targeting implies
that the attacker will also increase its absolute payoff, in the long run.

it has the same distribution as X0; its immediate reward is h in the coordinate
corresponding to the honest network. An override reduces the attacker’s secret
chain by h+1 blocks, which it publishes, and which the honest network accepts.
This bestows a reward of h + 1 blocks to the attacker. The state following a
match action depends on whether the next block is created by the attacker (α),
by honest nodes working on their branch of the chain ((1 − γ) · (1 − α)), or
by an honest node which accepted the sub-chain that the attacker published
(γ · (1−α)). In the latter case, the attacker has effectively overridden the honest
network’s previous chain, and is awarded h accordingly.

Table 1. A description of the transition and reward matrices P and R in the decision
problem M . The third column contains the probability of transiting from the state
specified in the left-most column, under the action specified therein, to the state on
the second one. The corresponding two-dimensional reward (the reward of the attacker
and that of the honest nodes) is specified on the right-most column.

State × Action State Probability Reward

(a, h, ·), adopt
(1, 0, irrelevant) α

(0, h)
(0, 1, irrelevant) 1− α

(a, h, ·), override†
(a− h, 0, irrelevant) α

(h+ 1, 0)
(a− h− 1, 1, relevant) 1− α

(a, h, irrelevant), wait
(a, h, relevant), wait

(a+ 1, h, irrelevant) α (0,0)
(a, h+ 1, relevant) 1− α (0,0)

(a, h, active), wait

(a, h, relevant),match‡

(a+ 1, h, active) α (0,0)
(a− h, 1, relevant) γ · (1− α) (h, 0)
(a, h+ 1, relevant) (1− γ) · (1− α) (0,0)

†feasible only when a > h
‡feasible only when a ≥ h

Objective Function. As explained in the introduction, the attacker aims to
maximize its relative revenue, rather than its absolute one as usual in MDPs.
Let π be a policy of the player; we will write π(a, h, fork) for the action that π
dictates be taken at state (a, h, fork). Denote by Xπ

t the state visited by time
t under π, and let r(x, y, π) = (r1(x, y, π), r2(x, y, π)) be the immediate reward
from transiting from state x to state y, under the action dictated by π. Xπ

t will
denote the t’th state that was visited. We will abbreviate rt(X

π
t , X

π
t+1, π) and

write simply rt(π) or even rt, when context is clear. The objective function of
the player is its relative payoff, defined by

REV := E

[
lim inf
T→∞

∑T
t=1 r

1
t (π)∑T

t=1 (r
1
t (π) + r2t (π))

]
. (1)

We will specify the parameters of REV depending on the context (e.g.,
REV (π, α, γ), REV (π), REV (α)), and will occasionally denote the value of
REV by ρ. In addition, for full definiteness of REV , we rule out pathological

behaviours in which the attacker waits forever—formally, the expected time for
the next non-null action of the attacker must be finite.

Honset Mining and SM1. We now define two policies of prime interest to
this paper. Honest mining is the unique policy which adheres to the protocol at
every state. It is defined by

honest mining (a, h, ·) =

{
adopt h > a

override a > h

}
, (2)

and wait otherwise. Notice that under our model, REV (honest mining, α, γ) = α
for all γ.8 Eyal and Sirer’s selfish mining strategy, SM1, can be defined as

SM1 (a, h, ·) :=





adopt h > a
match h = a = 1
override h = a− 1 ≥ 1
wait otherwise




. (3)

Profit threshold. Keeping the attacker’s connectivity capabilities (γ) fixed, we
are interested in the minimal α for which employing dishonest mining strategies
becomes profitable. We define the profit threshold by:

α̂(γ) := inf
α
{∃π ∈ A : REV (π, α, γ) > REV (honest mining, α, γ)} . (4)

3 A Simple Upper Bound

The mechanism implied by the longest-chain rule leads to an immediate bound
on the attacker’s relative revenue. Intuitively, we observe that the attacker cannot
do better than utilizing every block it creates to override one block of the honest
network. The implied bound is provided here merely for general insight—it is
usually far from the actual maximal revenue.

Proposition 1. For any π, REV (π, α, γ) ≤ α
1−α . Moreover, this bound is tight,

and achieved when γ = 1.

See Appendix B for the proof.

4 Solving for the Optimal Policy

Finding an optimal policy is not a trivial task, as the objective function (1)
is nonlinear, and depends on the entire history of the game. To overcome this
we introduce the following method. We assume first that the optimal value of
the objective function is ρ, then construct an infinite un-discounted average
rewardMDP (with “standard” linear rewards), compute its optimal policy (using
standard MDP solution techniques), and if the reward of this policy is zero then
it is optimal also in the original decision problem M . We elaborate on this
approach below.

8 Indeed, in networks without delay, honest mining is equivalent to the policy
{

adopt if (a, h) = (0, 1) ; override if (a, h) = (1, 0)
}

, as these are the only reach-
able states. Delays allow other states to be reached, and will be covered in Section 6.

4.1 Method

For any ρ ∈ [0, 1], define the transformation wρ : N
2 → Z by wρ(x, y) :=

(1 − ρ) · x − ρ · y. Define the MDP Mρ := 〈S,A, P, wρ(R)〉; it shares the same
state space, actions, and transition matrix as M , while M ’s immediate rewards
matrix is transformed according to wρ. For any admissible policy π denote by
vπρ the expected mean revenue under π, namely,

vπρ = E

[
lim inf
T→∞

1

T

T∑

t=1

wρ(rt(π))

]
, (5)

and by
v∗ρ = max

π∈A

{
vπρ
}

(6)

the value of Mρ.
9 Our solution method is based on the following proposition:

Proposition 2. 1. If for some ρ ∈ [0, 1], v∗ρ = 0, then any policy π∗ obtaining
this value (thus maximizing vπρ) also maximizes REV , and ρ = REV (π∗

ρ).
2. v∗ρ is monotonically decreasing in ρ.

Following these observations we can utilize the family Mρ to obtain an opti-
mal policy: We perform a simple search for a ρ such that the optimal solution
of Mρ has a value of 0. Since v∗ρ is monotonically decreasing, this search can
be done efficiently, using binary search. In practice, our algorithm relies on a
variation of Proposition 2, which will be proven formally in Appendix C.

Due to the fact that the search domain is continuous, practically, one would
need to halt the search at a point that is sufficiently close to the actual value,
but never exact. Moreover, in practice, MDP solvers can solve only finite state
space MDPs, and even then only to a limited degree of accuracy. Our algorithm
copes with these computational limitations by using finite MDPs as bounds to
the original problem, and by analyzing the potential error that is due to inexact
solutions.

4.2 Translation to Finite MDPs

We now introduce two families of MDPs, closely related to the family Mρ: Fix
some T ∈ N. We define an under-paying MDP, MT

ρ , which differs from Mρ only
in states where max {a, h} = T , in which it only allows only for the adopt action.
We denote this modified action space by AT . Clearly, the player’s value in MT

ρ

lower bounds that in Mρ, since in the latter the attacker might be able to do
better by not adopting in the truncating states. Consequently, this MDP can
only be used to upper bound the threshold (in a way described below).

To complete the picture we need to bound the optimal value from above,
and we do so by constructing an over-paying MDP, NT

ρ . This MDP shares the

9 The equivalence of this formalization of the value function and alternatives in which
the order of expectation and limit is reversed is discussed in [4].

same constraint as MT
ρ , yet it compensates the attacker in the states where

max {a, h} = T , by granting it a reward greater than what it could have gotten
in the un-truncated process: When T = a ≥ h, the attacker is awarded

(1− ρ) ·
α · (1− α)

(1− 2 · α)2
+

1

2
·

(
a− h

1− 2 · α
+ a+ h

)
. (7)

On the other hand, when T = h ≥ a, it is awarded

(
1−

(
α

1− α

)h−a)
· (−ρ · h) +

(
α

1− α

)h−a
· (1− ρ) ·

(
α · (1− α)

(1− 2 · α)
2 +

h− a

1− 2 · α

)
.

Denote by vTρ
∗
and uTρ

∗
the average-sum optimal values of the under-paying

MT
ρ and the over-payingNT

ρ , respectively (i.e., the expected liminf of the average

value, for the best policy in AT , similar to (5)-(6)). The following proposition
formalizes the bounds provided by the over-paying and under-paying MDPs:

Proposition 3. For any T ∈ N, if vρ
∗ ≥ 0 then uTρ

∗
≥ vρ

∗ ≥ vTρ
∗
. Moreover,

these bounds are tight: lim
T→∞

uTρ
∗
− vTρ

∗
= 0.

The proof is differed to the appendix. Having introduced these MDP families,
we are now ready to present an algorithm which utilizes them to obtain upper
and lower bounds on the attacker’s profit.

4.3 Algorithm

Algorithm 1

Input: α and γ, a truncation parameter T0 ∈ N, and error parameters 0 < ǫ <
8 · α, 0 < ǫ′ < 1

1. low ← 0, high← 1

2. do

3. ρ← (low + high)/2
4. (π, v) ← mdp solver(MT0

ρ , ǫ/8)

5. if (v > 0)
6. low← ρ

7. else
8. high← ρ

9. while(high− low ≥ ǫ/8)
10. lower-bound← (ρ− ǫ)

11. lower-bound-policy← π

12. ρ′ ← max {low − ǫ/4, 0}
13. (π, u) ← mdp solver(NT0

ρ′ , ǫ
′)

14. upper-bound← (ρ′ + 2 · (u + ǫ′))

The algorithm initializes the search segment to be [0, 1] (line 1) and begins
a binary search: ρ is assigned the middle point of the search segment (line 3),
and the algorithm outputs an ǫ/8-optimal policy of MT0

ρ and its value (line 4).
The loop halts if the size of the search segment is smaller then ǫ/8. Otherwise,
it restricts the search to the larger half of the segment, if the value is positive
(line 6), or to the lower half, in case it is negative (line 8). This essentially rep-
resents a binary search for an approximate-root of vT0

ρ , which is a monotonically
decreasing function of ρ. The algorithm outputs (ρ − ǫ) as a lower bound on
the player’s relative revenue, and π as an ǫ-optimal policy. These assertions are
formalized in the proposition below:

Proposition 4. For any T0 ∈ N and ǫ > 0, Algorithm 1 halts, and its output
(ρ, π) satisfies:

∣∣ρ−REV (π)
∣∣ < ǫ and

∣∣ρ−maxπ′∈AT0 {REV (π′)}
∣∣ < ǫ.

The second part of the algorithm (lines 12-14) computes an ǫ′-optimal policy
for the over-paying MDP NT0

ρ′ , for ρ
′ = (low − ǫ/4)+ (using the value assigned

last to low). If u is the outputted value, the algorithm returns ρ+ 2 · (u+ ǫ′) as
an upper bound to the player’s revenue (line 14).

Proposition 5. If u and ρ′ are the outcome of the computation in Algorithm 1,
lines 12-13, then ρ′ + 2 · (u+ ǫ′) > maxπ′∈A {REV (π′)}.

Both propositions are proved in Appendix C.

4.4 Profit threshold Calculation

The threshold α̂(γ) marks the minimal computational power an attacker needs in
order to gain more than its fair share (see Section 2). It is crucial in assessing the
system’s resilience: An attacker above the threshold is able to receive increased
returns on its investment, to grow steadily in resources,4 and eventually to push
other nodes out of the game. The system is safe against such a destructive
dynamic if all miners hold less than α̂(γ) of the computational power.

Fix γ. A simple method allows us to lower bound the threshold: We first
modify the action space of the overpayingNT

α so as to disable the option of honest
mining; technically, this is done by removing override from the feasible actions in
(1, 0) and then, separately, removing adopt in (0, 1). Denote this modified MDP

by N̂T
α . Then we solve N̂T

α , for some α, error parameter ǫ, and truncation T .
If the mdp solver returns a value smaller than (−ǫ) (both for when override is
disabled in (1, 0) and when adopt is disabled in (0, 1)), we are assured that honest
mining is optimal in the original setup. We perform a search for the maximal

α satisfying this requirement, i.e., ˆα(γ), in a fashion similar to the search in
Algorithm 1.

Corollary 6. Fix γ and α. If u is the value returned by mdp solver(N̂T
α , ǫ), and

u ≤ −ǫ, then honest mining is optimal for α. In other words, α̂(γ) ≥ α.

5 Results

5.1 Optimal Values

We ran Algorithm 1 for γ from {0, 0.5, 1}, with various values of α, using an MDP
solver for MATLAB (an implementation of the relative value iteration algorithm
developed by Chadés et al. [6]). The error parameter ǫ was set to be 10−5 and
the truncation was set to T = 75. The values of ρ returned by the algorithm, for
γ = 0, 0.5, 1, are depicted in Figure 1 above. Additionally, some values for γ = 0
appear in Table 2, computed for parameters T = 95 and ǫ = 10−5. The results
demonstrate a rather mild gap between the attacker’s optimal revenue and the
revenue of SM1. In addition, the graphs depict the upper bound on the revenue
provided in Section 3; as we stated there, the bound is obtained when γ = 1,
which is observed clearly in the corresponding graph.

Table 2. The revenue of the attacker under SM1 and under the ǫ-OPT policies, com-
pared to the computed upper bound, for various α and with γ = 0.

α SM1 ǫ-OPT
Upper-
Bound

1/3 1/3 0.33705 0.33707

0.35 0.36650 0.37077 0.37079

0.375 0.42118 0.42600 0.42604

0.4 0.48372 0.48866 0.48904

0.425 0.55801 0.56808 0.57226

0.45 0.65177 0.66891 0.70109

0.475 0.78254 0.80172 0.90476

5.2 Optimal Policies

Below we illustrate two examples of the behaviour of the ǫ-optimal policies re-
turned by the algorithm. The policies are described by tables, with the row
index corresponding to a and the columns to h. The table-entry (a, h) contains
three characters, specifying the actions to be taken in states (a, h, irrelevant),
(a, h, relevant), and (a, h, active) correspondingly. Table 3 contains a description
of an optimal policy, for an attacker with α = 0.45, γ = 0.5. Table 4 describes
optimal actions for the setup α = 1/3, γ = 0. Notice that in the latter the match
action is irrelevant, which allows us to regard in the second table only states
with fork = irrelevant. In both tables only a subset of the states is depicted,
the whole space being infinite.

To illustrate how Table 3 should be read, consider entry (a, h) = (3, 3), for
instance. The string “wm∗” in this entry reads: “in case a fork is irrelevant
(that is, the previous state was (2, 3)), wait; in case it is relevant (the previous
state was (3, 2)), match; the case where a fork is already active is not reachable”.

Table 3. The optimal policy for an attacker with α = 0.45 and γ = 0.5, for states
(a, h, ·) with a, h ≤ 8. The rows index the attacker’s chain length (a), and the columns
the honest network’s (h). The three characters in each entry represent the action to be
taken if fork = irrelevant, relevant, or active. ‘a’, ‘o’, ‘m’, and ‘w’ stand for adopt,
override, match, and wait, respectively, while ‘∗’ represents an unreachable state.

❅
❅❅a
h

0 1 2 3 4 5 6 7 8

0 ∗∗∗ ∗a∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

1 w∗∗ ∗m∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

2 w∗∗ ∗mw ∗m∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

3 w∗∗ ∗mw ∗mw wm∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗

4 w∗∗ ∗mw ∗mw omw wm∗ w∗∗ w∗∗ a∗∗ ∗∗∗

5 w∗∗ ∗mw ∗mw ∗mw omw wm∗ w∗∗ w∗∗ a∗∗

6 w∗∗ ∗mw ∗mw ∗mw ∗mw omw wm∗ w∗∗ w∗∗

7 w∗∗ ∗mw ∗mw ∗mw ∗mw ∗mw ooo w∗∗ w∗∗

8 w∗∗ ∗ww ∗mw ∗mw ∗mw ∗mw ∗m∗ oo∗ w∗∗

Table 4. The optimal policy for an attacker with α = 0.35 and γ = 0. The table
describes the actions only for states of the form (a, h, irrelevant) with a, h ≤ 8. (See
previous caption)

❅
❅❅a
h

0 1 2 3 4 5 6 7 8

0 ∗ a ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 w w w a ∗ ∗ ∗ ∗ ∗

2 w o w w a ∗ ∗ ∗ ∗

3 w w o w w a ∗ ∗ ∗

4 w w w o w w w a ∗

5 w w w w o w w w a

6 w w w w w o w w w

7 w w w w w w o w w

8 w w w w w w w o w

Looking into these optimal policies we see they differ from SM1 in two ways:
First, they defer using adopt in the upper triangle of the table, if the gap between
h and a is not too large, allowing the attacker to “catch up from behind”.
Thus, apart from block withholding, an optimal attack may also contain another
feature: attempting to catch up with the longer public chain from a disadvantage.
This implies that the attacker violates the longest-chain rule, a result which
counters the claim that the longest-chain rule forms a Nash equilibrium (see [11],
and discussion in Section 8)

Secondly, they utilize match more extensively, effectively overriding the hon-
est network’s chain (w.p. γ) using one block less.

5.3 Thresholds

Following the method described in Section 4.4, we are able to introduce lower
bounds for the profit thresholds. Figure 2 depicts the thresholds induced by
optimal policies, compared to that induced by SM1. The results demonstrate
some cutback of the thresholds, when considering policies other than SM1.

5.4 Evaluation of Protocol Modifications

Several protocol modifications have been suggested to counter selfish mining
attacks. It is important to provably verify the merit of such suggestions. This can
be done by adapting our algorithm to the MDPs induced by these modifications.
Below we demonstrate this with respect to the rule suggested by Eyal and Sirer.
According to the Bitcoin protocol, a node which receives a chain of length equal
to that of the chain it currently adopts, ought to reject the new chain. Eyal and
Sirer suggest to instruct nodes to accept the new chain with probability 1/2. We
refer to it below as “uniform tie breaking”.

The immediate effect of this modification is that it restricts the efficiency of
the match action to 1/2, even when the attacker’s communication capabilities
correspond to γ > 1/2. Admittedly, this limits the power of strongly communi-
cating attackers, and thus guarantees a positive lower bound on the threshold
for profitability of SM1 (which was 0, when γ = 1). On the other hand, it has the
apparent downside of enhancing the power of poorly communicating attackers,
that is, it allows an attacker to match with a success-probability 1/2 even if its
“real” γ is smaller than 1/2.

Unfortunately, our results show that this protocol enhances the profit of
some attackers from deviations. For example, by applying Algorithm 1 to the
setup induced by uniform tie breaking, we found that attackers in the range
{γ = 0.5 , 0.2321 < α < 0.5} benefit from this modification. In particular, the
profit threshold deteriorates from 0.25 to 0.2321. Figure 3 demonstrates this
by comparing the attacker’s optimal revenue under the uniform tie breaking
protocol with the optimal revenue under the original protocol. The dominating
policy is described in Table 5.

The intuition behind this result is as follows: Under uniform tie breaking, two
chains of equal length will be mined equally regardless of the passage of time

between the transmission of their last blocks. This allows an attacker to perform
match even if it did not have a block prepared in advance, thereby granting it
additional chances to catch up from behind. Deviation from the longest-chain
rule thus becomes even more tempting.

α
(fraction of hashrate)

0.2 0.25 0.3 0.35 0.4 0.45 0.5

ρ

(r

ev
en

ue
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Honest mining

eps-OPT policy γ=0.5
eps-OPT policy Uniform tie-breaking

Fig. 3. The attacker’s optimal revenue under uniform tie breaking, compared to that
under the original protocol (with γ = 1/2) and to honest mining.

5.5 Simulations

In order to verify the results above we built a selfish mining simulator which we
implemented in Java. We ran the simulator for various values of α and γ (as
in the figures above), where the attacker follows the policies generated by the
algorithm. Each run was performed for 107 rounds (block creation events). The
relative revenue of the attacker matched the revenues returned by the algorithm,
up to an error of at most ±10−6.

6 A Model that Considers Delays

So far, our model assumed that no new block is created until all preceding
published blocks arrived at all nodes. In reality, there are communication delays
between nodes in the network, including between the attacker and others. Thus,
instead of modeling the attacker’s communication capabilities via the parameter

Table 5. The optimal policy for an attacker with α = 0.25, under the “50-50” protocol
modification suggested in [9]. Only states (a, h, ·) with a, h ≤ 8 are depicted. This policy
outperforms honest mining.

0 1 2 3 4 5 6 7 8

0 ∗w∗ aa∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

1 w∗∗ ∗m∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

2 w∗∗ ∗oo m∗∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

3 w∗∗ ∗w∗ ∗oo m∗∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗

4 w∗∗ ww∗ ∗w∗ ∗oo m∗∗ w∗∗ w∗∗ a∗∗ ∗∗∗

5 w∗∗ ww∗ ww∗ ∗w∗ ∗oo m∗∗ w∗∗ w∗∗ a∗∗

6 w∗∗ ww∗ ww∗ ww∗ ∗w∗ ∗oo m∗∗ w∗∗ w∗∗

7 w∗∗ ww∗ ww∗ ww∗ ww∗ ∗w∗ ∗oo m∗∗ w∗∗

8 w∗∗ ww∗ ww∗ ww∗ ww∗ ww∗ ∗w∗ ∗oo m∗∗

γ, it may be better to directly consider the non-negligible effect of network
latency directly. Delays are especially noticeable when the system’s throughput
is increased by allowing larger blocks to form or by increasing block creation
rates (see [17]). While this makes the encoding of the game rather complicated,
a priori we can make the following observations:

1. The attacker has only a partial knowledge of the world state. Furthermore,
blocks which it publishes may arrive at the honest network too late, which
potentially reduces the benefit of block withholding.

2. Natural forks occur within the honest network, and consequently its chain
grows in a rate lower than one block per round; this potentially makes attacks
more successful.

3. Natural forks involving the attacker imply that the game arrives at non-
trivial states, even under honest mining. The attacker may thus mine hon-
estly until some particular deviation becomes feasible.

4. In the presence of delays, the attacker’s share under honest mining might be
greater than α, which raises the bar for dishonest strategies to prevail.10

The overall effect of the above cannot be determined without knowing the
topology of the network and the attacker’s location in it (as well as its knowl-
edge about the topology). Still, some insight is possible. Following the third
observation above, we notice that a dishonest policy π is one in which for some
h > a : π(a, h) 6= adopt and/or for some a > h : π(a, h) 6= override (whereas un-
der no delays honesty in (1, 0) and (0, 1) suffices). We claim that, consequently,
the profit threshold equals 0. In other words, every attacker benefits from some
form of dishonest mining.

Claim 7 When the network suffers some delays, the attacker has a strict better-
response strategy to honest mining, for any α > 0.

10 See [13], for one result quantifying this effect.

Below we provide a proof sketch, which contains the jist of the claim while
avoiding the involved formalization of the process under delays. We do mention
that the rewards in Mρ are now given by the expected outcome of future events,
specifically the resolution of future conflicts. For instance, following an override
action in (a, h), the attacker is awarded (1 − ρ) · (h + 1) times the probability
that its block will be accepted by all nodes, eventually.11

Proof (sketch). Fix k ∈ N, and let πk be the policy in which the attacker mines
honestly, until some state (k−1, k) is reached (and observable to it). Upon which,
instead of adopting, the attacker tries to catch up from behind, until it either
succeeds (and then it overrides) or it learns of another block of the honest net-

work (and then it adopts). Formally, πk(a, h) :=

{
override a > h
adopt h > a ∧ h 6= k

}
.

Since πk is stationary, we can analyze its long-term earnings in Mρ following the
result from Lemma 8.

Denote ρh := REV (honest mining) and ρk := REV (πk). Upon reaching
(k−1, k), the attacker’s immediate reward under honest mining is (−ρh · k). On
the other hand, if it follows πk, its expected immediate rewards are at least

q · (1− ρk) · (k + 1)− (1− q) · ρk · (k + 1), (8)

where q is a lower bound on the probability that it will succeed to bypass the
honest network’s chain and override it in time. The positive term in (8) corre-
sponds to the case where the scheme ends successfully (with an override), and
the negative one to the complementary scenario. To avoid dependencies on k, q
can be taken to equal

∫ ∞

0

∫ ∞

0

(α · λ)2 · e−αλ·(t+s) · e−(1−α)·λ·(t+s+da,h+dh,a)dsdt, (9)

where dh,a is the communiation delay on the link from the honest cluster to the
attacker, and da,h the delay on the reversed link (for simplicity, we assume that
in both directions there are single links connecting these parties to one another).
Indeed, the integrand above represents the probability that the next two blocks
of the attacker will take a time of t+s to be generated ((α · λ)

2
·e−αλ·(t+s)), and

that the honest network hasn’t been able to create a block since the beginning of
the propagation of its k’th block, and until the attacker’s (k+1)-block propagated
throughout the network (e−(1−α)·λ·(t+s+da,h+dh,a)).

Assume by way of negation that ρh ≥ ρk. If k is large enough, the following
relation holds:

q · (1− ρk) · (k + 1)− (1− q) · ρk · (k + 1)− (−ρh · k) ≥ (10)

q · (1− ρk) · (k + 1)− (1− q) · ρk · (k + 1) + ρk · k =

(k + 1) · q − ρk > 0. (11)

This implies that the expected rewards of πk, resulting form state (k−1, k) being
reached, exceed those of honest mining upon reaching this state. Since this is

11 It can be shown that this is actually decided in finite time, in expectation [17].

the only state in which these strategies differ, the inequality above implies that πk
strictly dominates honest mining, thus ρk = REV (πk) > REV (honest mining) =
ρh. We conclude that any attacker can benefit from deviating in some states from
honest mining, hence that the profit threshold vanishes.

⊓⊔

The intuition behind this result is clear: The attacker suffers a significant loss if
it adopts in (k − 1, k), when k is large, and it thus prefers to continue the fork
that formed naturally, and attempt to catch up.

This illustrates the importance of the policies found by Algorithm 1. As
we’ve seen (Section 5), those dominate SM1 in that they delay adoption, i.e.,
they allow the continuation of the attack even when the honest network’s chain
is longer than the attacker’s. While the additional benefit was rather mild, this
added feature becomes more important in networks with delays, where splits
in the chain occur naturally with some probability, even when honest mining is
practiced by all.

To gain further understanding of selfish mining under delays it would be
important to quantify the optimal gains from such deviations. We leave this as
an open question for future research. Still, it is clear that Bitcoin will be more
vulnerable to selfish mining if delays become more prominent, e.g., in the case
of larger blocks (block size increases are currently being discussed within the
Bitcoin developers community).

7 Effect on Double Spending Attacks

In this section we discuss the qualitative effect selfish mining has on the secu-
rity of payments. The regular operation of bitcoin transactions is as follows: A
payment maker signs a transaction and pushes it to the Bitcoin network, then
nodes add it to the blocks they are attempting to create. Once a node succeeds it
publishes the block with its content. Although the payee can now see this update
to the public chain of blocks, it still waits for it to be further extended before
releasing the good or service paid for. This deferment of acceptance guarantees
that a conflicting secret chain of blocks (if exists) will not be able to bypass and
override the public one observed by the payee, thereby discard the transaction.
Building a secret chain in an attempt to reverse payments is called a double
spending attack.

Success-probability. Satoshi Nakamoto, in his original white paper, provides
an analysis regarding double spending in probabilistic terms: Given that the
block containing the transaction is followed by n subsequent blocks, what is the
probability that an attacker with computational power α will be able to override
this chain, now or in the future? Nakamoto showed that the success-probability
of double spending attacks decays exponentially with n. Alternative and perhaps
more accurate analyses exist, see [15],[17].

Cost.While a single double spending attack succeeds with negligible probability
(as long as the payee waits long enough), regrettably, an attacker which contin-
uously executes double spending attempts will eventually succeed (a.s.). We

should therefore be more interested in the cost of an attack than in its success-
probability. Indeed, every failed double spending attack costs the attacker the
potential award it could have gotten had it avoided the fork and published its
blocks right away.

Observe, however, that a smart strategy for an attacker would be to con-
tinuously employ selfish mining attacks, and upon success combine them with
a double spending attack. Technically, this can be done by regularly engaging
in public transactions, while always hiding a conflicting one in the attacker’s
secret blocks.12 There is always some probability that by the time a successful
selfish mining attack has ended, the payment receiver has already accepted the
payment, which additionally results in a successful double spending.

To summarize, the existence of a miner for which selfish mining is at least as
profitable as honest mining fundamentally undermines the security of payments,
as this attacker bears no cost for continuously attempting to double spending,
and it eventually must succeed. Similarly, an attacker that cannot profit from
selfish mining alone, might be profitable in the long run if it combines it with
double spending, which potentially has grave implications on the profit threshold.

8 Related Work

The Bitcoin protocol was introduced in a white paper published in 2008 by
Satoshi Nakamoto [14]. In the paper, Nakamoto shows that the blockchain is
secure as long as a majority of the nodes in the Bitcoin network follow the
protocol. Kroll et al. [11] show that, indeed, always extending the latest block
in the blockchain forms a (weak, non-unique) Nash equilibrium, albeit under a
simpler model that does not account for block withholding.

On the other hand, it has been suggested by various people in the Bitcoin fo-
rum that strong nodes might be incentivized to violate the protocol by withhold-
ing their blocks [1]. Eyal and Sirer proved this by formalizing a block withholding
strategy SM1 and analyzing its performance [9]. Their strategy thus violates the
protocol’s instruction to immediately publish one’s blocks, but still sticks to the
longest-chain rule (save a selective tie breaking). SM1 1 still abandons its chain
if the honest nodes create a longer chain. One result of our paper is that even
adhering to the longest-chain rule is not a best response. We also prove what
the optimal policies are, and compute the threshold under which honest min-
ing is a (strict, unique) Nash equilibrium. Additional work on selfish mining via
block withholding appears in [3]. Transaction propagation in Bitcoin has also
been analyzed from the perspective of incentives. Results in [2] show that nodes
have an incentive not to propagate transactions, and suggests a mechanism to
correct this. Additional analysis from a game theoretic perspective has also been
conducted with regards to interactions pools, either from a cooperative game
theory perspective [12], or when considering attacks between pools [8].

12 In the worst case, the attacker is frequently engaged in “real” transactions anyways,
hence suffers no loss from them being occasionally confirmed, when attacks fail.

A recent paper by Göbel et al. has evaluated SM1 in the presence of de-
lays [10]. They show that SM1 is not profitable under a model of delays that
greatly differs from our own (in particular, they assume that block transmission
occurs as a memoryless process). While SM1 may indeed be unprofitable when
delay is modeled, we show that other profitable selfish mining attacks exist. Ad-
ditional analysis of block creation in the presence of delays and its effects on
throughput and double spending appears in [17,13,7].

Further discussion on Bitcoin’s stability can be found in a recent survey by
Bonneau et al. [5].

References

1. https://bitcointalk.org/index.php?topic=2227 , 2008. [Online; accessed 07-
July-2015].

2. Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and
red balloons. In Proceedings of the 13th ACM conference on electronic commerce,
pages 56–73. ACM, 2012.

3. Lear Bahack. Theoretical bitcoin attacks with less than half of the computational
power (draft). arXiv preprint arXiv:1312.7013, 2013.

4. K-J Bierth. An expected average reward criterion. Stochastic processes and their
applications, 26:123–140, 1987.

5. Joseph Bonneau, AndrewMiller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll,
and Edward W Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. 2015.

6. Iadine Chadès, Guillaume Chapron, Marie-Josée Cros, Frédérick Garcia, and Régis
Sabbadin. Mdptoolbox: a multi-platform toolbox to solve stochastic dynamic pro-
gramming problems. Ecography, 37(9):916–920, 2014.

7. Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International
Conference on, pages 1–10. IEEE, 2013.

8. Ittay Eyal. The miner’s dilemma. arXiv preprint arXiv:1411.7099, 2014.
9. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vul-

nerable. In Financial Cryptography and Data Security, pages 436–454. Springer,
2014.

10. Johannes Göbel, Paul Keeler, Anthony E Krzesinski, and Peter G Taylor. Bitcoin
blockchain dynamics: the selfish-mine strategy in the presence of propagation delay.
arXiv preprint arXiv:1505.05343, 2015.

11. Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of bitcoin
mining, or bitcoin in the presence of adversaries. In Proceedings of WEIS, volume
2013, 2013.

12. Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jef-
frey S Rosenschein. Bitcoin mining pools: A cooperative game theoretic analy-
sis. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 919–927. International Foundation for Autonomous
Agents and Multiagent Systems, 2015.

13. Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain
protocols. Financial Cryptography and Data Security, 2015.

14. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,
1(2012):28, 2008.

https://bitcointalk.org/index.php?topic=2227

15. Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009, 2014.

16. Richard Serfozo. Basics of applied stochastic processes. Springer Science & Business
Media, 2009.

17. Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in
bitcoin. Financial Cryptography and Data Security, 2015.

18. Frederick Stern. Conditional expectation of the duration in the classical ruin prob-
lem. Mathematics magazine, pages 200–203, 1975.

A Generality of the Model

As mentioned in Section 2, the most general setup would be for an attack-
strategy to consider also building its blocks in different places in the block-tree
(say, extending a previously abandoned chain, or adopting a subchain of the
public chain) and/or to publish more than h + 1 blocks upon overriding the
public honest chain. It is clear, intuitively, why such actions are suboptimal.
Below we make this formal.

Let π be an optimal strategy, when the above actions are available to the
attacker as well.

Part I:Assume there exists a state (a, h) where the attacker publishes h+ j
blocks with j > 1; we denote this by π(a, h) =“override by j”. We now con-
struct a policy π′, which follows π everywhere except that π′(a, h) = wait. By
Corollary 10, it suffices to show that vπ

′

ρ ≥ v
π
ρ = 0, where ρ is the relative revenue

induced by π; this will imply that no reduction in REV occurs when switching
from “override by j” to wait.

For every stateX , denote by vπρ (X) the expected value of (1−ρ)·E
[
R1,1(π)

]
−

ρ·E
[
R2,1(π)

]
conditioned on arriving at stateX (recall that τ1 is the terminating

state of the first run). We need to show that vπ
′

ρ (a, h) ≥ vπρ (a, h), as this is the
only states where these policies differ. Observe that vπρ (a, h) = (1−ρ) ·j+vπρ (a−
j, 0). This is because either j < a, and this action cannot lead to a termination
(hence the addition of vπρ (a−j, 0)), or j = a, and then vπρ (a−j, 0) = vπρ (0, 0) = 0,
which fits the fact that a termination occurred. We thus need to show that
vπ

′

ρ (a, h) ≥ (1− ρ) · j + vπρ (a− j, 0).
Indeed, consider the case where π′ performs “override by j” if X = (a, h+1)

or “override by (j+1)” if X = (a+1, h). Note that the action in the first case is
feasible, since a ≥ h+j > h+1, and similarly a+1 ≥ h+j+1 > h, for the second
case. In the former case we obtain vπ

′

ρ (a, h+1) = (1−ρ) · j+ vπρ (a− j, 0), and in

the latter, vπ
′

ρ (a, h+1) = (1−ρ)·(j+1)+vπρ (a+1−(j+1), 0). Therefore, we have
presented an action-scheme which guarantees π′ the value of π. As π (hence π′)
optimize the value vπρ (X), for any X , we have that the value of π (hence of π′)
in the states (a+1, h) and (a, h+1) is at least as high as (1−ρ) · j+vπρ (a− j, 0),
which completes this part of the proof.

Part II: We claimed, additionally, that the attacker will never adopt branches
in the block-tree other than its current secret one and the honest faction’s cur-
rent longest one. We now aim to justify this assertion, albeit with some infor-
malities; a formal proof is not possible under our model, because it implicitly

assumes that actions as override and adopt grant immediate reward, whereas if
the attacker adopts older abandoned chains it can hypothetically reverse such
decisions. Nonetheless it is very clear why this would be suboptimal:

For any (a, h), let A1, ..., Aa denote the attacker’s chain, and H1, ..., Hh the
honest network’s chain, and let H0 be the block that A1 and H1 extend (it is now
public, but may have belonged to the attacker).13 Let now (a, h) be the first state
at which the attacker decides to deviate and extend a block B other than Aa or
Hh. If B was not created after H0 (and B 6= H0), then it was available to the
attacker at the time it began extending H0. By the choice of (a, h), extending H0

was then at least as profitable as extending B, and this dominance is invariant
under future events (e.g., by the public chain that formed above H0). Thus the
attacker can just as well repeat its initial choice of H0 over B.

A similar argument holds for the case where B was created after H0 (or
B = H0). Denote by l the length of the attacker’s chain upon the creation of B.
Extending Al was then at least as profitable as extending B, by the choice of
(a, h), and this again is not altered by future events. All the same, the attacker
can just as well repeat its choice and choose Al over B. in conclusion, we can
restrict our attention to strategies restricted to our three-action model (four,
with wait), without loss of generality. This also enables a Markovian model,
fortunately, as described in Section 2.

B Proof of Proposition 1

Proposition 1:

For any π, REV (π, α, γ) ≤ α
1−α . Moreover, this bound is tight, and achieved

when γ = 1.

Proof. We can map every block of the honest network which was overridden, to
a block of the attacker; this is because override requires the attacker to publish
a chain longer than that of the honest network’s.

Let kT be the number of blocks that the attacker has built up to time T .
The honest network thus built lT := T − kT by this time. The argument above
shows that lT −

∑T
t=1 r

2
t ≤ kT . Also, Pr(lT > kT)→ 1, when T →∞. Therefore,

the relative revenue satisfies:

REV (π) = lim
T→∞

∑T
t=1 r

1
t∑T

t=1 r
1
t +

∑T
t=1 r

2
t

≤ lim
T→∞

∑T
t=1 r

1
t∑T

t=1 r
1
t + lT − kT

= (12)

lim
T→∞

1

1 + (lT − kT) /
(∑T

t=1 r
1
t

) ≤ lim
T→∞

1

1 + (lT − kT) /kT
= lim

T→∞

kT
lT
. (13)

The SLLN applies naturally to kT and lT , implying that the above equals
α·T

(1−α)·T = α
1−α (a.s.).

13 In case the honest network is forked, pick one of them arbitrarily; blocks are anony-
mous, and they are only accepted or rejected according to the lengths of their chains,
which are in this case equal.

To see that the bound is achieved in γ = 1, observe that the policy SM1
satisfies the property that every block of the attacker overrides one block of the
honest network, and that none of the attacker’s blocks are overridden (as the
policy never reaches a state where it needs to adopt, except when a = 0). This
turns both inequalities in (12)-(13) into equalities. ⊓⊔

C Correctness of Algorithm 1

In this section we prove that Algorithm 1 halts and that its output meets the
conditions specified therein. We begin with applying here a Strong Law of Large
Numbers, which will prove useful along our path. Under a fixed stationary policy
π, we denote by τ1 the renewal time of the game. Formally, τ1 is the time,
or number of visited states, until the game reaches a state s from which the
transition probabilities are α to state (1, 0) and 1− α to (0, 1).

Lemma 8. Let π be some fixed policy of MT0

ρ . Denote Rk,1(π) =
∑τ1
t=1 r

k
t (π)

(for k = 1, 2).

lim
T→∞

1

T

T∑

t=1

rkt (π) = E

[
lim
T→∞

1

T

T∑

t=1

rkt (π)

]
=

E
[
Rk,1(π)

]

E[τ1]
(a.s.), (14)

for k = 1, 2. Similarly,

lim
T→∞

1

T

T∑

t=1

wρ(rt(π)) = E

[
lim
T→∞

1

T

T∑

t=1

wρ(rt(π))

]
(15)

=
(1− ρ) · E

[
R1,1(π)

]
− ρ · E

[
R2,1(π)

]

E[τ1]
(a.s.) (16)

Proof. Define by Cπ the states reachable from state s0 := (1, 0, irrelevant), when
π is employed. We will show that Cπ is an irreducible positive recurrent Markov
chain. For any state X in Cπ it must be that the waiting time for the next
visit of s0 has finite expectation: Assume that after T ′ steps the honest network
created M(T ′) blocks and the attacker m(T ′). If M(T ′) > m(T ′) then as long
as the player does not adopt h− a =M(T ′)−m(T ′); this is regardless of other
actions which the attacker possibly made in the past. As block creations are
i.i.d, the process Y (T ′) = M(T ′) − m(T ′) is equivalent to a random walk on
Z with a positive drift, hence the expected time of the last time it returns to
the origin is finite. After which the only action the attacker can make is adopt
and wait. As our model does not allow for pathological strategies in which the
attacker waits for periods of infinite expected length, the next adoption occurs
in finite expected time. Finally, every adoption leads to X0 with probability α,
thus the next return to X0 is of finite expectation. This state is thus positive
recurrent. We conclude that Cπ consists of a single communicating class (the
finite expectation of the return implies the existence of a t for which there’s a
positive probability to return to s0 within t steps), hence that π induces a single

irreducible Markov chain Cπ, which is also positive recurrent, as s0 is. We can
thus use The Strong Law of Large Numbers for Markov chains (see, e.g., [16] pg.
50, Corollary 79) to arrive at (14) and (16). The right-hand side equality in (14)
follows from the SLLN applied to renewal reward processes. ⊓⊔

The following are immediate corollaries of the strong law above:

Corollary 9. For any admissible policy π of MT0

ρ ,

REV (π) =
lim
T→∞

1
T

∑T
t=1 r

1
t

lim
T→∞

1
T

∑T
t=1 (r

1
t + r2t)

=
E
[
R1,1

]

E [R1,1] + E [R2,1]
(a.s.) (17)

Corollary 10. Let π and π′ be two policies.

1. If (1 − α) · E
[
R1,1

]
− α · E

[
R2,1

]
≥ 0, then π dominates honest-mining.

2. If (1−REV (π))·E
[
R1,1(π′)

]
−REV (π)·E

[
R2,1(π′)

]
> 0, then π′ dominates

π.

Both assertions become strict together with the inequalities.

The following lemma states that an optimal policy in MT0

ρ , whose value is
small enough, is approximately optimal in M , if only truncated policies are
considered:

Lemma 11. Let ρ ∈ [0, 1], ǫ > 0, and T0 ∈ N. If π ∈ AT0 is optimal in MT0

ρ

and |vπρ | < ǫ/2, then

1.
∣∣ρ−REV (π)

∣∣ < ǫ

2.
∣∣ρ−maxπ′∈AT0 {REV (π′)}

∣∣ < ǫ

Proof. Observe that lim
T→∞

1
T

∑T
t=1

(
r1t (π

′) + r2t (π
′)
)
represents the average num-

ber of blocks added to the agreed pubic chain (aka main chain), per round, when
π′ is deployed. Under the honest strategy, this rate equals 1, as every round ac-
counts for the addition of a new block (see Section 2). On the other hand, no
positive recurrent strategy can more than halve the growth rate of the main
chain: For every block that is overridden and excluded from the main chain
there’s a corresponding overriding block is included in it (see also the proof of

Proposition 1).14 Thus, E
[
lim
T→∞

1
T

∑T
t=1

(
r1t (π

′) + r2t (π
′)
)]
≥ 1/2.

14 This assumption is without loss of generality, as at some point the player would
need to adopt, and the waiting time for it is finite in expectation. See the proof of
Lemma 8.

Part I: Relying on Lemma 8 we can manipulate the limits to obtain

ǫ/2 > vπρ = E

[
lim inf
T→∞

1

T

T∑

t=1

wρ(r
1
t (π) , r

2
t (π))

]
= (18)

E

[
lim inf
T→∞

1

T

T∑

t=1

(1 − ρ) · r1t (π)− ρ · r
2
t (π)

]
=

E

[
lim
T→∞

1

T

T∑

t=1

r1t (π)

]
− ρ · E

[
lim
T→∞

1

T

T∑

t=1

(
r1t (π) + r2t (π)

)
]
.

Using Corollary 9 we obtain

REV (π) =
E

[
lim
T→∞

1
T

∑T
t=1 r

1
t (π)

]

E

[
lim
T→∞

1
T

∑T
t=1 (r

1
t (π) + r2t (π))

] <

ρ+
ǫ/2

E

[
lim
T→∞

1
T

∑T
t=1 (r

1
t (π) + r2t (π))

] ≤ ρ+ ǫ.

Similarly, vπρ > −ǫ/2 implies

REV (π) > ρ−
ǫ/2

E

[
lim
T→∞

1
T

∑T
t=1 (r

1
t (π) + r2t (π))

] ≥ ρ− ǫ,

which concludes the first part.

Part II: We use here the same technique as previously. Assume by negation that
for some policy π′ ∈ AT0 , REV (π′) ≥ ρ+ǫ. Then, similar to the previous article,
we have

E

[
lim
T→∞

1
T

∑T
t=1 r

1
t (π

′)
]

E

[
lim
T→∞

1
T

∑T
t=1 (r

1
t (π

′) + r2t (π
′))
] = REV (π′) ≥ ρ+ ǫ =⇒ (19)

vπ
′

ρ = E

[
lim
T→∞

1

T

T∑

t=1

r1t (π
′)

]
− ρ · E

[
lim
T→∞

1

T

T∑

t=1

(
r1t (π

′) + r2t (π
′)
)
]
≥

(
E

[
lim
T→∞

1

T

T∑

t=1

(
r1t (π

′) + r2t (π
′)
)
])
· ǫ ≥ 1/2 · ǫ > vπρ , (20)

which contradicts the optimality of vπρ . This proves that ρ > maxπ′∈AT0 {REV (π)}
−ǫ. On the other hand, assume in negation that REV (π) ≤ ρ− ǫ. We then have,

E

[
lim
T→∞

1
T

∑T
t=1 r

1
t (π)

]

E

[
lim
T→∞

1
T

∑T
t=1 (r

1
t (π) + r2t (π))

] ≤ ρ− ǫ =⇒

vπρ = E

[
lim
T→∞

1

T

T∑

t=1

r1t (π)

]
− ρ · E

[
lim
T→∞

1

T

T∑

t=1

(
r1t (π) + r2t (π)

)
]
≤

(
E

[
lim
T→∞

1

T

T∑

t=1

(
r1t (π) + r2t (π)

)
])
· −ǫ ≤ 1/2 · (−ǫ) < vπρ ,

and we arrive again at a contradiction. Therefore, REV (π) > ρ − ǫ, hence
maxπ′∈AT0 {REV (π′)} > ρ− ǫ. ⊓⊔

Corollary 12. If π is ǫ/4-optimal in MT0

ρ and |vπρ | < ǫ/4, then the inequalities
guaranteed by Lemma 11 hold.

Proof. The first inequality holds for π, as in its proof we didn’t use the assump-
tion on π’s optimality. The second inequality is a property of ρ (and not of the
policy); it holds because |vπρ | < ǫ/4 together with π being ǫ/4-optimal imply

|vπ̂ρ | < ǫ/2, for an optimal policy π̂. ⊓⊔

Finally, we are ready to prove the correctness of Algorithm 1:
Proposition 4:

For any T0 ∈ N and ǫ > 0, Algorithm 1 halts, and its output (ρ, π) satisfies:∣∣ρ−REV (π)
∣∣ < ǫ and

∣∣ρ−maxπ′∈AT {REV (π′)}
∣∣ < ǫ.

Proof. Observe that vTρ
∗
, the optimal value ofMT0

ρ , is monotonically decreasing

in ρ: If ρ1 > ρ2 and π1 is optimal in MT0

ρ1 , then v
T0

ρ2

∗
≥ vT0,π1

ρ2 > vT0,π1

ρ1 = vT0

ρ1

∗
,

where the strict inequality holds because wρ is strictly decreasing. Furthermore,

vT0

ρ
∗
is continuous in ρ, as wρ is.

Now, the quantity (high − low) is halved at every iteration of the loop
(lines (6),(8)), hence the number of iterations must be finite. To understand
what we can say about v when the algorithm halts and high − low < ǫ/8, we
make use of loop invariants: First, we claim that for every value assigned to low
throughout the algorithm’s run, the value returned by mdp solver(MT0

low, ǫ/8) is
positive. Indeed, low begins with a value of 0. Honest mining gains the attacker
a value of α, in MT0

0 ; mdp solver(MT0

low, ǫ/8) thus returns a positive value, as-
suming ǫ < 8 · α. Any further alteration of low’s value, in line 6, is conditioned
to satisfy this assertion.

Similarly, the value returned by mdp solver(MT0

1 , ǫ/8) must be negative,
since the attacker’s profits for its blocks vanishes, and its revenue for blocks
it adopts is negative (and such events occur in finite time, in epxectation; see
Lemma 8). In addition, any new assignment to high is conditioned to be non-
positive, by line 8.

From the monotonocity and continuity of vT0

ρ
∗
we deduce that the root of

vT0

ρ
∗
lies between low and high. However, high−low < ǫ/8 implies that |v| < ǫ/8:

Indeed, assume in negation that vπρ ≥ ǫ/8. Then

ǫ/8 ≤ vπρ = E

[
lim
T→∞

1

T

T∑

t=1

r1t (π)

]
− ρ · E

[
lim
T→∞

1

T

T∑

t=1

(
r1t (π) + r2t (π)

)
]
≤

E

[
lim
T→∞

1

T

T∑

t=1

r1t (π)

]
− (ρ+ ǫ/8) · E

[
lim
T→∞

1

T

T∑

t=1

(
r1t (π) + r2t (π)

)
]
+ ǫ/8

(21)

≤ vT0

ρ+ǫ/4

∗
+ ǫ/8 < vT0

high

∗
+ ǫ/8.

We used here the inequality E

[
lim
T→∞

1
T

∑T
t=1

(
r1t (π) + r2t (π)

)]
≤ 1 (see the proof

of Lemma 11), and the strict monotonicity of vT0

ρ
∗
. This contradicts vT0

high

∗
≤ 0. A

similar derivation rules out the case vπρ ≤ −ǫ/8, which holds as a loop invariant.
We conclude that |v| < ǫ/8. ⊓⊔

Proposition 3. For any T ∈ N, if vρ
∗ ≥ 0 then uTρ

∗
≥ vρ

∗ ≥ vTρ
∗
. Moreover,

these bounds are tight: lim
T→∞

uTρ
∗
− vTρ

∗
= 0.

We precede the proof of the proposition with some (fun!) probability anal-
ysis. Denote by Low-Triangle the set of states {(a, h) : a ≥ h}. Fix some pol-
icy π and a state (a0, h0). Denote by Y πt the random process defined by our
game, where the initial state is (a0, h0). Let ψ be a stopping time defined by
max {t : Y πt ∈ Low-Triangle}. If Y

π
ψ = (a1, a1) (observe that Y πψ must lie in

the main diagonal), we denote last(a0, h0) := a1. last(a0, h0) represents the num-
ber of blocks the attacker (or the honest network, for the matter) has, before
leaving Low-Triangle for the rest of the epoch.

Lemma 13. For any state (a, h0) ∈ Low-Triangle,

E [last(a0, h0)] =
α · (1− α)

(1− 2 · α)
2 +

1

2
·

(
a0 − h0
1− 2 · α

+ a0 + h0

)
(22)

Proof. Note first that last(a0, h0) = 1
2 · (ψ − (a0 − h0)) + a0, because if the

attacker created k blocks after reaching (a0, h0), the honest network needs to
create precisely k+ a0 − h0 blocks in order to leave Low-Triangle. We are thus
left with the task of calculating E [ψ]. Consider a random walk on Z, starting
at a0 − h0, with probability α of moving one step towards positive infinity and
(1 − α) of moving towards negative infinity. Let ψ′ be the time until the last
visit of the origin. Observe that ψ′ has the same distribution as ψ (!), we thus
identify them with each other, henceforth.

We further break ψ into stopping times: Let N be the number of visits to the
origin (we have N > 0 almost surely, since the drift is towards negative infinity).
Let ψ1 be the first time up to the first visit of the origin, and for 1 < k ≤ N , let

ψk be the time that elapsed between ψk−1 and the next visit to the origin. Any
two travels that begin and end at the origin are i.i.d, and, moreover, the number
of such travels is independent of their lengths. Therefore, by Wald’s equation,
E [ψ − ψ1] = E [N] · E [ψ2].

We can interpret N as counting the number of failures before one success,
where a success represents a visit of the origin which never returns to it (this is
equivalent, almost surely, to never returning to the nonnegative side of Z). The

probability of a success is
(
1− α

1−α

)
, implying that E [N] =

α
1−α

1− α
1−α

= α
1−2·α .

Whenever the walk starts at +1 the expected return time to the origin is
1

1−2·α . The same expression holds for the expected return time when starting at
−1, conditioned on a return occurring (see [18]). Counting the first step to ±1
as well, the expected next return to the origin, conditioned on its occurrence, is(
1 + 1

1−2·α

)
.15 We conclude that E [ψ − ψ1] =

α
1−2·α ·

(
1 + 1

1−2·α

)
.

Another result in [18] implies that E [ψ1] =
a0−h0

1−2·α . We obtain:

E [ψ] =
α

1− 2 · α
·

(
1 +

1

1− 2 · α

)
+
a0 − h0
1− 2 · α

=⇒ (23)

E [last(a0, h0)] =
1

2
· (E [ψ]− (a0 − h0)) + a0 =

1

2
· (E [ψ] + a0 + h0) = (24)

1

2
·

(
α

1− 2 · α
·

(
1 +

1

1− 2 · α

)
+
a0 − h0
1− 2 · α

+ a0 + h0

)
= (25)

α · (1− α)

(1− 2 · α)
2 +

1

2
·

(
a0 − h0
1− 2 · α

+ a0 + h0

)
. (26)

⊓⊔

Proof (of Proposition 3). Part I: Let π be an optimal policy in Mρ. Assume the
game has reached state (a, h) ∈ Low-Triangle, and an oracle lets the attacker
know that this is the last state in Low-Triangle which the game will reach be-
fore a future adopt. Assume further that the oracle lets the attacker “cheat” and
perform the action match with success probability 1 (granting him, effectively,
γ = 1) and even if the previous state was not in Low-Triangle (ignoring thus
restrictions on the feasibility of match). Obviously, the attacker can only benefit
from this oracle, by waiting for the last state in Low-Triangle, and then per-
forming match (it has nothing to lose by taking only the null action up to that
point).

Upon which, performing match on the main diagonal marks the end of the
first epoch, since the respective chains of the attacker and the honest network
collapse, hence the next state is distributed as X0 is. As a result, we may bound
the accumulated immediate rewards from state (a, h) ∈ Low-Triangle onwards,
up to τ1, in Mρ, by

(1− ρ) · E [last(a, h)] = (1 − ρ) ·
α · (1− α)

(1− 2 · α)2
+

1

2
·

(
a− h

1− 2 · α
+ a+ h

)
. (27)

15 Note that, starting at +1, the expected return time is unaffected by conditioning on
an eventual return, since this occurs w.p.1.

This is precisely the reward given in state (a, h) ∈ Low-Triangle with a = T , in
the over-paying MDP NT

ρ .
We follow the same approach to bound the accumulated rewards from states

(a, h) /∈ Low-Triangle. Assume that the oracle tells the attacker whether it
will ever return to the main diagonal (without adopting first) or not. Clearly, if
the oracle carries the negative message, the attacker is better off adopting right
away, minimizing its negative reward.16 This will imply a reward of −ρ · h. On
the other hand, if the oracle says the process will eventually return to the main
diagonal, the attacker is better off waiting for that event. If we denote by (a0, aa)
the next arrival at Low-Triangle (which is necessarily on the main diagonal),
then E [a0|return occurs] = h−a

1−2·α ([18]).
Upon which the attacker’s future rewards up to τ1 are bounded from above

by (1−ρ) ·E [last(a0, a0)] = (1−ρ) ·
(
α·(1−α)

(1−2·α)2
+ a0

)
, by (22). Since this is linear

in a0, we conclude that the expected reward from state (a, h) /∈ Low-Triangle,
conditioned on returning to the Low-Triangle, is upper bounded by (1 − ρ) ·(
α·(1−α)

(1−2·α)2
+ h−a

1−2·α

)
. The probability of this event is (α/(1− α))

h−a
. All in all, the

attacker’s rewards from state (a, h) /∈ Low-Triangle onward are upper bounded
by

(
1−

(
α

1− α

)h−a)
· (−ρ · h)+ (28)

(
α

1− α

)h−a
· (1− ρ) ·

(
α · (1− α)

(1− 2 · α)2
+

h− a

1− 2 · α

)
.

This, again, is exactly the reward given in the over-payingNT
ρ when state (a, h) /∈

Low-Triangle with h = T is reached.
Part II: Recall the result of Lemma 8:

vπρ =
(1− ρ) · E

[
R1,1(π)

]
− ρ · E

[
R2,1(π)

]

E[τ1]
. (29)

When the optimal (in Mρ) π is applied in NT
ρ , with an adopt in the truncating

states, the expected epoch time cannot be greater. Therefore, if vπρ = v∗ρ ≥ 0,
this transformation can only increase vπρ . We conclude that if π is optimal policy

in Mρ, then the expected average value of (the truncated version of) π in NT
ρ

upper bounds vπρ = v∗ρ . An optimal policy of NT
ρ can only do better, hence

uTρ
∗
≥ v∗ρ, which concludes the involved part of the proof.

Part III: That v∗ρ ≥ vTρ
∗
is trivial, since any policy that is feasible in MT

ρ is

feasible in Mρ, and the rewards are identical. Finally, we show that uTρ
∗
ց vTρ .

First, observe that the reward from visiting a state (a, h) /∈ Low-Triangle, given
in (28), converges to ρ · h. Thus, as T goes to infinity, the reward from these
states in NT

ρ converges to that of MT
ρ . On the other hand, the probability to

16 Recall it is forced to adopt at some stage, as we’ve seen before.

reach a state in Low-Triangle vanishes exponentially with T (e.g., by applying
Chernoff’s bound). The reward given in NT

ρ in the truncating states of the form
(T = a ≥ h) grows only linearly in T (see (27); a and h are linear in T). Therefore,
the expected reward from these states (without conditioning on reaching them)

vanishes. We thus obtain
(
uTρ

∗
− vTρ

)
→ 0, as T goes to infinity. ⊓⊔

Corollary 14. If vTρ
∗
≥ 0 then ρ+ 2 · uTρ

∗
≥ maxπ′∈A {REV (π′)}.

Proof. The proofs in Appendix C did not use the truncation of the process.
We can therefore follow the same steps as in the proof of Lemma 11, Part II :
Put ǫ = 2 · uT0

ρ
∗
. Then v∗ρ ≥ vT0

ρ
∗
≥ 0, hence uTρ

∗
≥ vρ

∗, by Proposition 3.

Similarly to the implication following (19)-(20), we can deduce that ρ+2 ·uT0

ρ
∗
≥

maxπ′∈A {REV (π′)}. ⊓⊔

Proposition 5. If u and ρ′ are the outcome of the computation in Algorithm 1,
lines 12-13, then ρ′ + 2 · (u+ ǫ′) > maxπ′∈A {REV (π′)}.

Proof. If low ≤ ǫ/4 then ρ′ is assigned the value 0. In this case, as shown above,

vT0

1

∗
> 0. Assume that low > ǫ/4. In the proof of Proposition 4 it was shown

that the value returned by mdp solver(MT0

low, ǫ/8) is positive. Therefore, v
T0

low

∗
>

−ǫ/8. Applying the proof of Lemma 11 we deduce that vT0

low−2·ǫ/8

∗
+ ǫ/8 > ǫ/8,

hence vT0

ρ′
∗
> 0. Corollary 14 thus applies to ρ′, and we obtain ρ′ + 2 · uTρ

∗
≥

maxπ′∈A {REV (π′)}. Observing that u+ ǫ′ > uT0

ρ
∗
completes the proof. ⊓⊔

We complete the appendix with the proof of Corollary 6:

Corollary 6: Fix γ and α. If u is the value returned by mdp solver(N̂T
α , ǫ), and

u ≤ −ǫ, then honest mining is optimal for α. In other words, α̂(γ) ≥ α.

Proof. If u ≤ −ǫ then the value of N̂T
α is smaller than 0. If we denote by M̂α

the same modification (of disabling honest mining) applied now to Mα, then

the value of M̂α cannot be poisitive (similarly to Proposition 3). However, hon-
est mining guarntees a value of 0 in Mα, and we conclude that honest mining
(weakly) dominates other strategies. ⊓⊔

	Optimal Selfish Mining Strategies in Bitcoin

