
ar
X

iv
:1

91
2.

11
40

1v
1

 [
cs

.C
R

]
 2

4
D

ec
 2

01
9

On the Decentralized Generation of the RSA

Moduli in Multi-Party Settings

Vidal Attias∗1, Luigi Vigneri†1, and Vassil Dimitrov‡1

1IOTA Foundation

Abstract

RSA cryptography is still widely used. Some of its applications (e.g.,
distributed signature schemes, cryptosystems) do not allow the RSA mod-
ulus to be generated by a centralized trusted entity. Instead, the factoriza-
tion must remain unknown to all the network participants. To this date,
the existing algorithms are either computationally expensive, or limited
to two-party settings. In this work, we design a decentralized multi-party
computation algorithm able to generate efficiently the RSA modulus.

1 Introduction

Rivest-Shamir-Adleman (RSA) [14] is one of the first public key encryption
systems, and it is still widely used. RSA uses the product of two large prime
numbers p and q to compute a public modulus N . The security of RSA is
guaranteed by the difficulty of the integer factorization of the public modu-
lus: its factorization would provide the prime numbers p and q and, thus, the
corresponding private key.

The simplest technique to generate RSA keys is by using an agent trusted by
the parties who does not disclose the factorization. However, many applications
using RSA (e.g., distributed signature schemes [12], threshold cryptosystems
[11], multi party computations [8]) require to generate the RSA keys in a dis-
tributed way. In other contexts, for instance when using verifiable delay func-
tions [4] for spam prevention in distributed ledger technologies [7], the private
key does not have to be computed, and the algorithm require the decentralized
generation of the public modulus only.

In this document, we propose a multi-party protocol generating a public
RSA modulus, which extends the state-of-the-art two-party algorithm discussed
in [Frederiksen].

The rest of the paper is organized as follows: in Section 2, we present the
previous work on RSA key generation, and in Section 3 we review in detail
the fastest algorithm to date [Frederiksen]; then, in Section 4, we describe
our algorithm working in a multi-party setting; after that, we conclude our

∗vidal.attias@iota.org
†luigxi.vigneri@iota.org
‡vassil@iota.org

1

http://arxiv.org/abs/1912.11401v1

paper with a discussion about network overhead and algorithm complexity in
Section 5.

2 State of the art

Fiat and Shamir seminal paper on signature schemes [10] has paved the way to
the research on usnig public modulus with unknown factorization. Later, Boneh
and Franklin designed a distributed modulus generation algorithm including a
biprimality testing algorithm in a multi-party setting [5]. The algorithm works
with semi-honest adversaries1 in a honest majority.

Another direction was taken by Algesheimer [1] and by Damgard andMikkelsen
[9]. The authors suggested to compute a full primality test of the factors while
keeping them secret instead of a biprimality test by executing a distributed
Miller-Rabin test [13]. Gilbo presented a secure version of the protocol based
on the Boneh and Franklin technique [5].

The first work on two-parties protocol with one of the party being semi-
honest has began with [6] but was found to be insecure by [3]

More recently, Frederiksen [Frederiksen] proposed an algorithm using a
new distributed product routine running in a two-party setting both in a semi-
honest and in a malicious environment by using modern techniques such as
Oblivious Transfer extensions [2]; this solution runs in 40 seconds, compared
to 15 minutes of the previous fastest protocol. In this paper, we propose a
multi party algorithm for multi-party RSA modulus generation by extending
the Frederiksen’s protocol [Frederiksen] to more than two parties. We start
by reviewing the original protocol in the next section.

3 Frederiksen’s protocol

3.1 Algorithm set up

3.1.1 Objective

The algorithm aims to generate two large prime random numbers p and q of the
same order (i.e., having the same bit-length) and the distributed computation
of their product N = p · q. The numbers p and q are k-bit numbers, i.e.,
p, q ∈ [1, 2k]. A fundamental requirement is that none of the party involved in
the computation can be able to retrieve either p or q.

3.1.2 System model

Consider a network made of a set N of two nodes P1,P2 ∈ N which decide to
collaborate to run the protocol. The protocol makes the following additional
assumptions:

A.1 Semi-honest participants. Both nodes follow the protocol. However, one
of them could try to guess the secret shares of the other one to retrieve
the factorization of the public modulus.

1Semi-honest nodes precisely follow the protocol (like honest nodes) but try to collect
information for malicious purposes during their communications. They are also called honest

but curious.

2

A.2 Reliable networking layer. Every message is received in the same way it
has been sent with probability one and in finite time.

3.1.3 Protocol outline

At a high level, the proposed algorithm involves the following steps:

P.1 Random number generation. The two active nodes P1 and P2 respectively
generate the numbers p1, q1 and p2, q2.

P.2 Fast trial divisions. The active nodes run fast trial divisions by small
primes numbers on both p = p1 + p2 and q = q1 + q2 to quickly discard
wrong candidates. If p or q fail the test, the algorithm restarts from P.1.

P.3 RSA modulus computation. The two parties compute N = (p1+p2) · (q1+
q2) in a distributed way without revealing information on key’s parts.

P.4 Biprimality test. A biprimality test verifies whether N is a product of two
prime numbers whp. If the biprimality test fails, the algorithm restarts
from P.1.

In the next subsection, we will describe rigorously each part of the protocol.

3.2 Detailed protocol

3.2.1 Random number generation

The goal of this step, is for node P1 (resp. P2) to pick two numbers p1, q1 ∈
[0, 2k − 1] (resp. p2, q2 ∈ [0, 2k − 1]). Let p , p1 + p2 and q , q1 + q2 be the
sum of the number generated by the two nodes. However the biprimality test
(step P.4 of the protocol) requires

p ≡ 3(mod4) ∧ q ≡ 3(mod4). (1)

Hence, the protocol enforces that P1 (resp. P2) randomly picks two numbers
p̂1, q̂1 ∈ [1, 2k−2] (resp. p̂2, q̂2 ∈ [1, 2k−2]). After that, node P1 (resp. node P2)
concatenates two zeros (resp. two ones) to satisfy Eq. (1), i.e., p1 , p̂1||{0; 0}
and q1 , q̂1||{0; 0} (resp. p2 , p̂2||{1; 1} and q2 , q̂2||{1; 1}).

3.2.2 Fast trial divisions

As a protocol optimization, we can discard some trivial non-prime candidates
to reduce the number of the algorithm iterations. The idea is to divide the
candidates with small prime numbers.

Let B ∈ N be a certain threshold, which indicates the number of prime
numbers that we want to test. For each prime β < B, P1 and P2 run a β-
divisibility test for p and q. The β-divisibility test consists in computing the
remainder of (p1 + p2)(mod β) while keeping secret p1 and p2. The above is
described in algorithm 1. The parties test if p1+p2 ≡ 0 (mod β) or, equivalently,
p1 ≡ −p2 (mod β). We use the 1-out-of-β Oblivious Transfer (OT) algorithm2

to hide the rest of the modulus β of p2 to P1. The same test has to be ran for
q.

2We refer the interested reader to Appendix 5.4 for further information on the algorithm.

3

In the algorithm, P1 inputs {r0, . . . , rβ−1} ∈ [0, 2k − 1]β to the OT, while
P2 requests r−p2(mod β) from the OT and send it to P1. Then, P1 can check if
r−p2(mod β) = rp1(mod β): if yes, then p1 ≡ −p2(modβ) and the protocol has to
be restarted.

Finally, one can note that this step is parallelizable by running different
β-divisibility tests simultaneously with different values of β.

Algorithm 1 β-divisibilty-test

P1 and P2 initialize a 1-out-of-β OT
P1 generates {r0, . . . , rβ−1} ∈ [0, 2k − 1]β

P1 inputs {r0, . . . , rβ−1} to the OT
P2 computes a = −p2 mod β
P2 receives ra from the OT
P1 computes b = p1 mod β
P1 sends rb to P2

if ra = rb then P2 sends ⊥ else P2 sends ⊤

3.2.3 RSA modulus computation

This step aims to compute the product between p and q, i.e.,

N = p · q

= (p1 + p2) · (q1 + q2)

= p1 · q1 + p1 · q2 + p2 · q1 + p2 · q2.

While the terms p1 · q1 and p2 · q2 can be computed locally by P1 and P2,
the two remaining terms must be computed in a distributed way. To this end,
the protocol defines the procedure distr product.

Let us assume P1 knows a ∈ N and P2 knows b ∈ N, and the two nodes want
to compute a · b without disclosing their number to the other party. Moreover,
let

l , max(⌊log2(a)⌋+ 1, ⌊log2(b)⌋+ 1)

be the minimum number of bits necessary to represent a and b. Then, given an
input x ∈ N, for bit i, we can define the function

Bi(x) =

{

0, if the i-th bit of x is 0;

1, otherwise.

Note that we count bits from the least significant digit.
For each bit i of x, P1 generates

c1i = c0i + a, where tc0i ∈ [0, 2l − 1],

and the instantiates an OT with {c0i , c
1
i } as an input. Then, P2 requests c

Bi(b)
i =

c0i + a · Bi(b). Finally, P1 computes

s1 = −
l−1
∑

i=0

c0i · 2
i,

4

and P2 computes

s2 =

l−1
∑

i=0

c
Bi(b)
i · 2i.

Hence,

s1 + s2 =

l−1
∑

i=0

Bi(b) · a · 2
i = a · b.

To calculate p1 · q2 + q1 · p2 without information leakage, P1 will compute
sp1 (resp. sq1) and P2 will compute sq2 (resp. sp2) by running distr product(p1,
q2) (resp. distr product(q1, p2)). Finally, P1 will share sp1 + sq1 with P2 and
P2 will share sp2 + sq2 such as

sp1 + sp2 + sq1 + sq2 = p · q.

Importantly, the algorithm allows each party to only have partial information
of the output, while their sum is the exact output. In order to dissimulate
information, the parties only share the sum of all the partial product they
compute.

Algorithm 2 distr product

We have P1 which knows a =
∑

ai2
i and P2 which knows

b =
∑

bi2
i with i ∈ {0; l− 1} and ai, bi ∈ {0, 1}

P1 sets s1 = 0
P2 sets s2 = 0
for i = 0 to i = l− 1

P1 and P2 initialize a 1-out-of-2 OT
P1 generates c0 ∈ {0, 2l − 1}
P1 computes c1 = c0 + a mod 2l

P1 inputs {c0, c1} into the OT
P2 receives cbi from the OT
P1 computes s1 = s1 − c02

i

P2 computes s2 = s2 + cbi2
i

Both parties keep s1 and s2 secret for future usage

Algorithm 3 Distributed computation of p · q

P1 and P2 compute respectively α2
1 and β1

2 via distr product

of p1q2
P1 and P2 compute respectively β2

1 and α1
2 via distr product

of p2q1
P1 computes f1 = p1q1 + α2

1 + β2
1

P2 computes f2 = p2q2 + α1
2 + β1

2

P1 and P2 share f1 and f2 to compute N = f1 + f2

3.2.4 Biprimality test

This test, inspired by [5], is composed of two parts, and requires to perform s
times a random filtering test.

5

Algorithm 4 Distributed filtering biprimality test

P1 samples γ ∈ Z
×
N with Jacobi symbol over N equal to 1

P1 sends γ to P2

P1 computes γ1 = γ
N+1−p1−q1

4 mod N and sends it to P2

P2 computes γ2 = γ1 · γ
−p2−q2

4 mod N
if γ2 = ±1 P2 sends ⊤ else P2 sends ⊥

Then the parties verify in a distributed way that gcd(N, p+ q − 1) = 1.

Algorithm 5 Distributed test of gcd(N, p+ 1− 1)

P1 and P2 generate respectively r1 and r2 in ZN

They compute shares α1, α2 of r1(p2 + q2 − 1) mod 23k2

They compute shares β1, β2 of r2(p1 + q1) mod 23k2

P1 sends s1 = r1(p1 + q1) + α1 + β1 mod N to P2

P2 sends s2 = r2(p2 + q2 − 1) + α2 + β2 mod N to P1

Both parties check that gdc(s1 + s2, N) = 1 and return ⊤ oth-
erwise return ⊥

4 Generalization to n participants

The aforementioned two-party protocol is proven to work securely in a semi-
honest environment. Here, we will present our generalization to n parties while
keeping the same high-level structure. Also, we make sure that the computa-
tional complexity and the network overhead are reasonably low, to keep the
efficiency of the algorithm similar to the one in [Frederiksen].

4.1 System model

We consider a set N of n ∈ N nodes which participates to the protocol. We
refer to node i as Pi. For the sake of simplicity, we assume the number of
participants to be n = 2t, where t ∈ N.

We keep the assumption of a perfect networking layer and semi-honest partic-
ipants. However, we also consider the scenario where some of them can collude
and communicate their private information in order to derive the private key.
From the point of view of an honest node, it is not possible to detect such a
behaviour as all nodes actually follow the protocol.

4.2 Key’s parts generation

Each node Pi has to generate a pair pi, qi ∈ [1, 2k]. Moreover, we define p ,
n
∑

i=1

pi and q ,
n
∑

i=1

qi. Since, the biprimality test requires that p ≡ 3(mod4) and

q ≡ 3(mod4) (see Eq. (1)), the protocol enforces that:

• P1 randomly picks two numbers p̂1, q̂1 ∈ [1, 2k−2] and concatenates two
ones to satisfy Eq. (1), i.e., p1 , p̂1||{1; 1} and q1 , q̂1||{1; 1}

6

• all the other nodes i, where i ∈ N − {1}, randomly picks two numbers
p̂i, q̂i ∈ [1, 2k−2], and concatenates two zeros, i.e., pi , p̂i||{0; 0} and
qi , q̂i||{0; 0}.

Node P1 can be selected through leader election (potentially based on some
node characteristics, such as reputation or hash). We note that the selection of
this node does not influence the outcome of the protocol, as it only affects the
generation of the two last bits of its secret numbers.

4.3 Fast trial divisions

Generalizing the β-division to n parties is complicated as the original algorithm
was specifically designed for two parties. We unstress the constraint of using
OTs to communicate the secret shares remainder modulus β. Our β-division
works in t turns. We set N0 = N and during the first turn, there is a consensus
on a selection of a subset N1 ⊂ N and a bijection

f1 : N0 \ N1 → N1

between N1 and the set of non-selected nodes. Each non-selected node i will
send its secret share pi mod β to its associated node j in N1 which will sum it
with its own secret share modulus β. In the second turn, we will again select a
subset N2 ⊂ N1 of half of the nodes in N1 and a bijection

f2 : N1 \ N2 → N2

between the selected and non-selected nodes such that the non-selected nodes
will send the sum of the private share modulus β they know. And the algorithm
will iteratively divide the selected sets until only Nt which contains only one
node that will be able to output if

∑

i∈N

pi mod β == 0. The algorithm 6 shows

a pseudocode of this procedure.
The major issue in this algorithm is how to construct fk : Nk−1 \ Nk → Nk

in a decentralized way such that everybody have the same and with a minimum
amount of communications. We propose in algorithm 7 a way to solve this
problem using a deterministic attribution of the associations using a hashing
function preventing malicious parties to manipulate this part of the protocol.
We assume the parties agree before the fast trials part on a seed and a certain
hashing function H such that we can construct Hm : {0, 1}∗ → [1,m] for m ∈
N.The way this seed and H are generated depends on the network’s goals and
policies but they can agree to use the SHA256 hashing function and generate the
seed using a distributed number generator. This technique allows to have no
communication for finding consensus during the protocol.

7

Algorithm 6 Generalization of the fast trial division

Pi.v ← pi, ∀i ∈ N
for k ← 1 to k ← t

The nodes in Nk−1 select Nk ⊂ Nk−1 containing half the
nodes of Nk−1

and fk
foreach party p ∈ Nk−1 \ Nk

p sends p.v mod β to fk(p)
fk(p) computes fk(p).v ← (fk(p.v)+p.v) mod β

The last party pfinal in Nt sends ⊥ if pfinal.v = 0 else ⊤

Algorithm 7 Construction of fk

m← 2t−k−1

We assume Nk−1 \ Nk and Nk are indexable data structures of
m elements
D is a data structure mapping Nk−1 \ Nk → Nk

A← []
for i← 1 to i← m

j ← 0
do

c← Hm(β + seed+ ”|” + k + ”|” + j)
while c ∈ A
D[Nk−1 \ Nk[i]]← Nk[c]

return D

The input of the hashing function in this algorithm contains β, seed,k and
j.

• β is here to change the output of the function at each division trial to
prevent people from getting information from the same parties each time
without having to agree on a new seed each time.

• k plays the same role be between each turn of one β-division

• j is here to make sure that A is a permutation of [1,m] and does not
contain twice the same number while allowing people to compute on their
own without communicating.

4.4 Distributed multiplication

In this subsection, we want to compute
∑

i pi ·
∑

i qi in a similar way to the
Frederiksen’s algorithm. First, note that

n
∑

i=1

pi ·
n
∑

i=1

qi =
n
∑

i=1

(pi · qi) +
n−1
∑

i=1

n
∑

j=i+1

(pi · qj + pj · qi) (2)

The first term of the left hand side of Equation 2 can be computed solely
by every party. As for the second term, for each pair i, j ∈ N 2 with i < j,

8

the nodes Pi and Pj have to compute pi · qj + pj · qi in a distributed way
without disclosing their secret shares. We then suggest that Pi and Pj run the

distr product routine and compute xj,p
i for Pi and xi,q

j for Pi for computing

pi ·qj and respectively they would compute xj,q
i and xi,p

j while computing pj ·qi.
Finally, we have for each party Pi, Pi computes

fi = pi · qi +
∑

j∈N ,j 6=i

xj,p
i + xj,q

i ,

and broadcast it to everyone so that everybody can compute N =
n
∑

i=1

fi. At

that point, N is a public information to everyone.

Algorithm 8 Generalized distributed multiplication

fi ← 0 for i ∈ N
for 1 ≤ i ≤ j ≤ n

if i = j
fi += piqi

else

We compute piqj and pjqi as in algorithm 9

fi += xj,p
i + xj,q

i

fj += xi,p
j + xi,q

j

The parties share fi ∀iN to compute N ←
∑

i∈N

fi

Algorithm 9 Computing piqj + pjqi

We have two parties, Pi and Pj with i < j
Pi and Pj compute respectively xj,p

i and xi,q
j via distributed

computation of piqj
Pi and Pj compute respectively xj,q

i and xi,p
j via distributed

computation of pjqi

4.5 Biprimality test

First part

In this section we keep the same idea of testing for a certain γ randomly gen-
erated if γN+1−p−q = ±1. This part can be easily done in a decentralized
way with properties offered by the exponentiation. The parties elect a leader
Pe that will generate a number γ ∈ Z

×
N with Jacobi symbol over N equal

to 1 and shares it with everybody. Then each party Pi, i ∈ N will compute
γi = γ−pi−qi and send it to Pe. Once Pe received all the gammai, it will

compute gammafinal = γN+1 ·
n
∏

i=1

γi mod N . Finally, if |γfinal| = 1, Pe

broadcasts ⊤ otherwise it broadcasts ⊥. The algorithm 10 gives the details of
this procedure. This test returns ⊤ if N is composite of two prime numbers but
have a probability of 1/2 to return ⊤ otherwise. Therefore, in order to increase

9

the reliability of this algorithm, the parties should run it s time with s such
that 1

2n is a probability low enough to return ⊤ for a wrong modulus.

Algorithm 10 First discriminating biprimalty test

Parties elect a party Pe

Ps generates γ ∈ Z
×
N and shares with everybody

for party Pi (including Pe)
Pi computes γi = γ−pi−qi

Pi sends γi to Pe

Pe compute γfinal = γN+1 ·
n
∏

i=1

γi mod N

if |γfinal| = 1, Pe broadcasts ⊤ else ⊥

We can see it is important for γ to be in Z
×
N in order to be able to compute

negative exponents by using γ−1. The way of electing Pe . A way that can
be done is using the hashing function and the seed defined in the fast trial
divisions in order to elect implicitly the leading party at each trial without
requiring further communications.

Second part

In this part, we want compute gcd(
∑

i∈N ri ·(
∑

i∈N pi+
∑

i∈N qi−1), N) where
ri is a number generated by a node i ∈ N . Let ∆i = pi+ qi, i ∈ N . In the same
idea as for the distributed multiplication, we can rewrite

∑

i ∈ N ri · (
∑

i ∈
Npi +

∑

i ∈ N qi − 1) as

∑

i∈N

ri · (
∑

i∈N

pi +
∑

i∈N

qi − 1) =
∑

i∈N

(ri ·∆i − 1) +
∑

i∈N

∑

i∈N
i6=j

ri ·∆i (3)

The have the same schema as for the distributed multiplication whith the
first term of the left hand of Equation 3 which can be computed solely by a
node and the other term has to be computed using distr product. Finally
they share all the sum gi of their parts of computation similarly to fi in the
distributed multiplication and they compute G =

∑

i∈N gi mod N . Finally
each node can verify on its own wether gcd(G,N) = 1. If so, the modulus N
can be used, otherwise, the protocol has to be restarted.

10

Algorithm 11 Second discriminating biprimality test

gi ← 0 for i ∈ N
Each party i generate a secret random number ri ∈ ZN for
i ∈ N
for 1 ≤ i ≤ j ≤ n

if i = j
si += ri(∆i − 1)

else

We compute ri∆j and rj∆i as in algorithm 9

gi += uj,r
i + uj,∆

i

gj += ui,∆
j + βi,r

j

The parties share gi mod N ∀i ∈ N to compute G =
n
∑

i=1

gi

mod N
if gcd(G,N) = 1 then N is considered to be sure

5 Network overhead

Here we present a theoretical analysis of the amount of communications neces-
sary for a successful try. We use br as an abbreviation for “broadcast”.

5.1 Fast trial divisions

Considering a single division, if we consider for simplicity we have n = 2t partic-
ipants, we have t steps where for the i-th step, 2t−i parties send their values to
someone else. In the worst case, which is the node which will return the value,
it makes log2(n) communications to receive the data plus one communication to
return the result. In the best case, which is a node communicating it’s private
share modulus the small prime at the first round, it only makes on connection
to give and one to receive the output.

So we have for B different fast trial divisions, each party operates the fol-
lowing amount of communications:

• Worst-Case : B · (log2(n) + 1)

• Best-Case : 2 ·B

5.2 Distributed multiplication

Let us count for a single multiplication of a · b with two k-bits numbers. For
each bit the two parties instantiate an OT and either input or receives a value
from it which makes k communications per party. Then as each party computes
two product with the other parties, they operate 2k(n−1) communications plus
2k(n−1) OT instantiations. Finally we have a question of how sharing the final
values in order to add everything to get N . We can suppose everyone broadcasts
their final value fi.

11

Finally we get 2k(n− 1) + n communications per party for the distributed
multiplication plus 2k(n− 1) oblivious transfer initializations.

5.3 Biprimality test - First part

In this part, the chosen party to generate γ only broadcasts the value of γ, then
the other parties communicate their exponentiation with a single communication
and finally the first party communicates the output with a broadcast.

Then we have for each party according to the role during the s trials

• Worst-Case : s · (1 + (n− 1) + 1) = s · (n+ 1)

• Best-Case : 3 · s

5.4 Biprimality test - Second part

Here we have something really similar to the distributed multiplication part
except the multiplications ar 2k bits longs here. Then each party operates
4k(n− 1) + n communications plus 4k(n− 1) OT instantiations.

We can see the theoretical amount of communication is linear with the
growth of n and k so we have a quadratic growth of the global amount of
communications. Furthermore, we can parallelize a great part of the steps. For
example we can run various fast trial divisions in parallel with a different prime
number and massively parallelize the multiplications.

References

[1] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation
modulo a shared secret with application to the generation of shared safe-
prime products. Tech. rep. 2002, pp. 417–432.url: https://eprint.iacr.org/2002/029.pdf.

[2] Gilad Asharov et al.More Efficient Oblivious Transfer Extensions with Se-
curity for Malicious Adversaries *. Tech. rep. 2017. url: https://eprint.iacr.org/2015/061.pdf.

[3] Simon R. Blackburn et al. “Weaknesses in Shared RSA Key Generation
Protocols”. In: Springer, Berlin, Heidelberg, Dec. 1999, pp. 300–306. doi:
10.1007/3-540-46665-7_34. url: http://link.springer.com/10.1007/3-540-46665-7%7B%5C_%7D34.

[4] Dan Boneh, Benedikt Bnz, and Ben Fisch. A Survey of Two Verifiable De-
lay Functions. Tech. rep. 2018. url: https://eprint.iacr.org/2018/712.pdf.

[5] Dan Boneh and Matthew Franklin. “Efficient generation of shared RSA
Keys”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1294.4 (July 1997), pp. 425–439. issn: 16113349.doi: 10.1007/BFb0052253.
url: http://portal.acm.org/citation.cfm?doid=502090.502094.

[6] Clifford Cocks. Split Knowledge Generation of RSA Parameters. Tech. rep.
url: https://link.springer.com/content/pdf/10.1007/BFb0024452.pdf.

[7] Coordicie Team and IOTA Foundation. The Coordicide. Tech. rep. Coordi-
cide, 2019. url: https://files.iota.org/papers/Coordicide%7B%5C_%7DWP.pdf.

12

https://eprint.iacr.org/2002/029.pdf
https://eprint.iacr.org/2015/061.pdf
http://dx.doi.org/10.1007/3-540-46665-7_34
http://link.springer.com/10.1007/3-540-46665-7%7B%5C_%7D34
https://eprint.iacr.org/2018/712.pdf
http://dx.doi.org/10.1007/BFb0052253
http://portal.acm.org/citation.cfm?doid=502090.502094
https://link.springer.com/content/pdf/10.1007/BFb0024452.pdf
https://files.iota.org/papers/Coordicide%7B%5C_%7DWP.pdf

[8] Ronald Cramer, Ivan Damgrd, and Jesper B. Nielsen. Multiparty compu-
tation from threshold homomorphic encryption. Tech. rep. 2001, pp. 280–
300. url: https://www.iacr.org/archive/eurocrypt2001/20450279.pdf.

[9] Ivan Damgrd and Gert Lsse Mikkelsen. “Efficient, robust and constant-
round distributed RSA key generation”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 5978 LNCS (2010), pp. 183–200. issn:
03029743. doi: 10.1007/978-3-642-11799-2_12.

[10] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solu-
tions to Identification and Signature Problems”. In: Advances in Cryptol-
ogy CRYPTO’ 86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986,
pp. 186–194.doi: 10.1007/3-540-47721-7_12. url: http://link.springer.com/10.1007/3-540-47721-7%7B%5C_%7D12.

[11] Carmit Hazay et al. Efficient RSA Key Generation and Threshold Paillier
in the Two-Party Setting. Tech. rep. 2. 2019, pp. 265–323.doi: 10.1007/s00145-017-9275-7.
url: https://eprint.iacr.org/2011/494.pdf.

[12] Bart Preneel. Advances in cryptology EUROCRYPT 2000: International
conference on the theory and application of cryptographic techniques bruges,
Belgium, may 14-18, 2000 proceedings. Vol. 1807. Springer, 2000, p. 608.
isbn: 9783540675174.url: https://dl.acm.org/citation.cfm?id=1756190.

[13] Michael O. Rabin. Probabilistic algorithm for testing primality. Tech. rep.
1. 1980, pp. 128–138. doi: 10.1016/0022-314X(80)90084-0.

[14] R L Rivest, A Shamir, and L Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Tech. rep. url: https://people.csail.mit.edu/rivest/Rsapaper.pdf.

1-out-of-n Oblivious Transfer

A 1-out-of-n Oblivious Transfer (OT) is a cryptosystem which allows a sender
to propose n messages and a receiver to chose one of them without the sender
knowing which one. We can also consider a random 1-out-of-n OT which sends
the n messages to the sender instead of receiving an input. This cryptosystem
allows two people to share information without disclosing knowledge on the
choice of the receiver and the other options he could have chosen. This will be
used as a way to compute distributed multiplications and in other situations in
the protocol. The behaviour of this mechanism is specified in algorithm 12.

Algorithm 12 1-out-of-n Oblivious Transfer (OT) procedure

P1 and P2 initialize the OT with the parameter n
P1 sends {µ1, . . . , µn}
P2 sends i ∈ [1, n]
P2 receives µi

13

https://www.iacr.org/archive/eurocrypt2001/20450279.pdf
http://dx.doi.org/10.1007/978-3-642-11799-2_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://link.springer.com/10.1007/3-540-47721-7%7B%5C_%7D12
http://dx.doi.org/10.1007/s00145-017-9275-7
https://eprint.iacr.org/2011/494.pdf
https://dl.acm.org/citation.cfm?id=1756190
http://dx.doi.org/10.1016/0022-314X(80)90084-0
https://people.csail.mit.edu/rivest/Rsapaper.pdf

	1 Introduction
	2 State of the art
	3 Frederiksen's protocol
	3.1 Algorithm set up
	3.1.1 Objective
	3.1.2 System model
	3.1.3 Protocol outline

	3.2 Detailed protocol
	3.2.1 Random number generation
	3.2.2 Fast trial divisions
	3.2.3 RSA modulus computation
	3.2.4 Biprimality test

	4 Generalization to n participants
	4.1 System model
	4.2 Key's parts generation
	4.3 Fast trial divisions
	4.4 Distributed multiplication
	4.5 Biprimality test

	5 Network overhead
	5.1 Fast trial divisions
	5.2 Distributed multiplication
	5.3 Biprimality test - First part
	5.4 Biprimality test - Second part

